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Lecture 1

Introduction and Overview
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What Is a System?

A system [1]: is an object in which variables of different 
kinds interact and produce observable signals: Outputs.

Its external signals are either Inputs or Disturbances. 

System

W(t)

u(t) y(t)

�3



 Dynamic system: A system with a memory, i.e., the input 
value at time t will influence the output at future instants.

Example: Solar Water Heater

W(t)

Outdoor temp.
& wind

u(t)Pump velocity

l(t)

Solar 
radiation

Hot water

y(t)
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A System MODEL

A Model is a description of a system. The model should 
capture the essential information of the system.

Where the model is NEEDED?
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Where the model is NEEDED?[2]

In process design:        /       leads to difficulties to perform 
experiments on real process. 

In          process control: Short-term behavior of the 
processed may be needed to be predicted. Used in model-
based control design.

In  plant optimization, an optimal operating strategy is 
sought. It may also be used for training the plant 
personnel.

In    fault detection, checking anomalies in process parts. 
Monitoring physical states (concentration, temp., … etc.) 
that are not available via measurement.  �6



Types of  Models

Mental models do not involve any math formalization,  
e.g. driving a car.

Graphical models properties are described by numerical 
tables and/or plots, e.g. step or frequency responses of 
linear systems.

Mathematical models describe the relationship among 
system variables in terms of math. expressions, e.g. 
differential equations.
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Building a Model

A model is constructed from observed data.

Mental model of car-steering dynamics is developed 
through driving experience.

Graphical models are developed from measurements.

Math. models are derived from 
Modeling

System Identification

⎧
⎨
⎩
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o System Identification o

System Identification is how to build a system model based 
on the recorded input and output signals and their data 
analysis.

This route to math. as well as to graphical models is 
based directly on experimentation.

Generally, our acceptance of a model should be guided 
by “usefulness” rather than “truth”.

�9



Mathematical Model TYPES

1. Linear and nonlinear

A linear system is a mathematical model of a system based on the use of a 

linear operator. Superposition principle can be applied. 

Nonlinear system: the change of the output is not proportional to the change 

of the input. 
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Mathematical Model TYPES

2. Stationary (time invariant) and non-stationary 

•Time-varying systems have parameters that vary with time: 

   e.g. a rocket mass decreases as fuel is consumed. 
  

•Time-invariant systems: 

dx

dt
= a(t)x(t)
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Mathematical Model TYPES

3. Continues and discrete time

Continues model: the relationship between continuous signals. 

Differential equations are often used to describe such a relationship. 

Discrete model: expresses the relationship between the values of the 

signals at the sampling instants. Such model is typically described by 

difference equations.
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Mathematical Model TYPES

4. Deterministic and stochastic

Stochastic process: has mainly probabilistic knowledge of the exact state 

of the system. Uncertainty is present i.e. it’s a model for a process that has 

some kind of randomness. 

Deterministic models (no probabilities): non-parametric models which can be 

described by (step, frequency,) response. Parametric models which are 

expressed by differential equations, algebraic equations, T.F’s etc. 
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Mathematical Model TYPES

5. Lumped and distributed

Distributed parameter model: many physical phenomena are described 

mathematically by partial differential equations. The events are dispersed 

over the space variables. 

Lumped models: the events are described by a finite number of changing 

variables; such models are usually expressed by ordinary differential 

equations. 
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Mathematical Model TYPES

6. Static and Dynamic

Static models: if there are direct, instantaneous links between inputs and 

outputs, the system is termed static. The input and output are related by 

algebric equations. 

Dynamic models: inputs and outputs are related by differential equations 

(which will make the current input affects future outputs also). 
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Mathematical Model TYPES

6. Single Input and Multi Input

Identification technique is simplified when the state of the system is 

affected by one input as compared with a state that is affected by a 

combination of several inputs. 
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Lecture 2

• Kinds of models: White box, 
Grey and Black box.

• Identification vs. Physical 
modeling

• System Identification 
Procedure.

• SI Flowchart.
• SI Methods.
• Classical Deterministic 

Methods: Step Response.
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What kinds of  models are there?

based on physical laws and relationships that cover the system 
behavior, e.g. mass and energy balances. 

General models: often nonlinear. 

ALL variables & parameters have physical meaning.

Demands a priori knowledge of the process. Usually Incomplete!!

Time-consuming.

May lead to complex models.

1-White box (First-principle )

!18



Use experiments & measurements to deduce a model.

No or very little prior knowledge is exploited. 

Models are less general.

What kinds of  models are there?

2-Systems Identification (Black Box)

3-Grey-box models

Derive model from laws and tune 'some' parameters to data.

Combines Analytical models and black-box identification.
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White-box, Grey and Black-box 
models.
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A White-box model example: 
The Simple Pendulum
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A Grey-box model example: The 
Lab.-Scale tank system

The purpose: water level y(t) changes with the inflow 
generated by the voltage u(t).

After several experiments, the best linear black-box 
model:  

y(t) = a
1
y(t −1)+ a

2
u(t −1)
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The fit was not bad BUT the output level was negative 
at certain times!!!

All tested linear models showed this kind of behavior.

Combining Bernou$i’s law: the outflow is proportional to 
the sqrt(y(t)):

A Grey-box model example: The 
Lab.-Scale tank system

y(t) = a
1
y(t −1)+ a

2
u(t −1)+ a

3
y(t −1)
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System Identification Procedure

Input - output data involves four basic ingredients: 
  
• The nature of  the input.  

• Selection of  model structure or determining the order of  the 

linear model.  

• Selection of  a ID Approach and Parameter Estimation. 

• Model validation. 
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The INPUT

1. The computations can be simplified if  a special types of  input 

signals are chosen such as step, impulse, Pseudo Random Binary 

Sequence PRBS, …etc.  

2. The input should excite all the modes of  the system.  

3. The choice of  the input depends on the type of  the input that the 

process might undergo under normal conditions (operations).  

4. The level of  the input is chosen such that the process will not drift 

to nonlinearity or to damage the product of  the process.  
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The Validation

To validate that the model represents the process or system.  

To see the accuracy, model generalization abilities. 

Cross-validation tests: Difference between the simulated and 

measured output. 

Process Prior knowledge & statistical tests involving confidence 

limits are used to validate the model.  

However, it must recognize that this objective of  proving the model 

is correct can only be approached and not achieved. 
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Classification of  Identification Methods
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Classification of  Identification Methods

!28



Identification according to a Model

!29



Parametric Model

(A)Example of  a parametric model of  a dynamical linear system (a 

low-pass filter) and its input & output (x and y).

• The results are values of  the parameters in the model.  

• These may provide better accuracy (more information), but are often 

computationally more demanding.
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• Have a large number of  parameters. 

• These parameters do not necessarily have a physical interpretation. 

• Generally, a nonparametric model is generated from a procedure in 

which we relate a system’s input x(t) and output y(t).  

• The results are (only) curves, tables, etc.  

• These methods are simple to apply.  

• They give basic information about e.g. time delay, and time constants 

of  the system. 

• Example: the characterization of  an LTI dynamical system with its 

(sampled) unit impulse response(UIR). The operator in this case would 

be convolution. 

Non-parametric model
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Parametric vs. Non-parametric model

(B) The black box, nonparametric equivalent of  the same system is 

the white curve representing the (sampled) unit impulse response 

(UIR). 

• Convolution of  the input time series x(t) with the system’s UIR h(t)  

generates the system’s output time series y(t): 
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Classification of  Identification Methods
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The basic steps of  SI

The identification process amounts to repeatedly selecting a model 

structure, computing the best model in the structure, and evaluating this 

model’s properties to see if  they are satisfactory. The cycle can be itemized 

as follows:  

1. Design an experiment and collect input-output data from the process to 

be identified.  

2. Examine the data. Polish it so as to remove trends and outliers, and select 

useful portions of  the original data. Possibly apply filtering to enhance 

important frequency ranges.  
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The basic steps of  SI

3. Select and define a model structure according to the input-output data.  

4. Compute the best model in the model structure according to the input-

output data and a given criterion of  fit.  

5. Examine the obtained model’s properties  

6. If  the model is good enough, then stop; otherwise go back to Step 3 to try 

another model set. Possibly also try other estimation methods (Step 4) or 

work further on the input-output data (Steps 1 and 2).  

!35



System Identification Flow Chart
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Identification from Step 
Responses
A classical Method
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Identification from Step Responses

Provide information about an approximate process gain, dominant 
time constant, and time delay.

The input signal used is a step change of one of the process inputs when 
all other inputs are held constant.

It is necessary that the controlled process is in a steady state before 
the step change.

The measured process response is a real step response that needs to 
be further normalized for unit step change and for zero initial conditions.

 Taking several step responses and calculating the average from them 
may help to diminish the effect of random noise. 
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 When exposed to a sudden change in the input, the 
system will initially have undesirable output period 
known as transient response.

 The steady state response of the system is the response 
a%er the transient response has ended. 

Identification from Step Responses
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First-order System [3]
Consider a first order approximation of an identified process:

where Z is the process gain, T time constant, and Td time delay 
that need to be determined.

The step response corresponding to G(s) can be obtained via the 
inverse Laplace transform of the output as:

Prove
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FOS Model from Step Response

Graph. method: Slope-intercept method
• First, a slope is drawn through the inflection point of the 

process reaction curve.

• Then T and Td are determined by inspection. 
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This method suffers from using only one point to estimate T.  

difficult to find the inflection point due to e.g. noise, computer display,…etc

Several points may provide better estimate.

T can also be obtained from the step response as the time when the output 
reaches 63% from its new steady state.

FOS Model from Step Response
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Step Response of  a First-order system

!43



We assume the normalized step response. 

To normalize: y(t)/Δu, Δu is the step change.

The process static gain is given as the new steady-state 
output Z = y(∞) ….(Prove!)

!44



If we assume that two points t1, y1 and t2, y2 from the step response are 
known then:

After some manipulation:
Prove
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Example: CSTR Model
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Example: SI of  First-order System

!47

Consider step response of dimensionless deviation output 
concentration x1 in a CSTR to step change of Δqc = 10

Measured step response of a chemical reactor 

using the input change  Δu = 10
Continues Stirred-Tank Reactor (CSTR)



Consider step response of dimensionless deviation output 
concentration x1 in a CSTR to step change of Δqc = 10

Example: SI of  First-order System

To obtain the normalized step response, the original one was 
divided by the step change value.
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Two points were chosen: [0.85; 0.0082] and [2.18; 0.0224]. 

The process gain was obtained as Z = 0.027 from y(∞). 

From the points t1, y1 and t2, y2, the time constant T = 0.94 

and the time delay Td = 0.51.
!49



The approximated step response is shown in the same figure by a dashed 
line. 

Both curves coincide at the measured points.

However, there are significant discrepancies elsewhere. 

This procedure serves only for a crude estimate of process parameters.
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FOS Model from Step Response 
Sundaresan and Krishnaswamy’s Method



Sundaresan and Krishnaswamy’s Method

• They proposed that two times, t35 and t85, be estimated 

from a step response curve, corresponding to the 35.3% 

and 85.3% response times, respectively. 

•  T and Td are then estimated from the following 

equations:

• Z can be calculated by the ratio of total steady-state  

change in y and the size of step change of u. 
!52

T
d
= 1.3t35 − 0.29t85

T = 0.67(t85 − t35 )



Sundaresan and Krishnaswamy’s Method

!53

Td = 1.3t35 − 0.29t85

T = 0.67(t85 − t35 )

Z = y
∞



Estimating Second-order Model 
Parameters Using Graphical Analysis

!54

In general, a better approximation to an 
experimental step response can be obtained by fitting 
a second-order model to the data. 



Second-order LTI Model [4]
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Fitting Second -order Models

A 2nd order system TF is written often as

The larger of the two time constants     is called the dominant time 
constant.

Two limiting cases:                 where the system becomes first order 
and

                  , the critically damped case. 
!56

τ
1



Over damped and critically 
damped Models

Figure below shows the range of shapes that can occur 
for the step response model

 M is the total step change 
!57
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Over damped and critically 
damped Models

Figure below shows the range of shapes that can occur 
for the step response model

 M is the total step change 
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Underdamped Second Order 
System

The damping 0≤ζ<1.

The ID task is to find K, ωn and ζ.

The process static gain is as in the previous case given as 
the new steady-state value of the process output K = 
y(∞).
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Underdamped Second Order System
Given are points [t1, y1], [t2, y2] and the steady state output y(∞).

we will use the fact that the derivative of the step response with 
respect to times is in the points tn (local extrema) zero.
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Underdamped Second Order System

The step response is of the form

The derivative of y(t) with respect to time is given as

The slope in above is zero at local extrema:

�60

!y(t) = ω n

1−ζ 2
e−ζωnt sinω dt Prove

y(t) = K 1− e−ζωnt cosω dt + ζ
1−ζ 2

e−ζωnt sinω dt
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

!y(tn ) = 0→ sinω dtn = 0

tn = nπ
ω d

, n = 0,±1,±2,... (1)

Prove



Underdamped Second Order System

Substituting       in y(t) 

At n=1 in eq.(1) (Overshoot): 

At n=2:

�61

y(tn ) = K 1 −  e−ζωntn  cos ω dtn  +  
ζ

1−ζ 2
   sinω dtn

⎛

⎝
⎜

⎞

⎠
⎟  

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

y(t1) = K(1 + e

−ζωnπ

ωd  )

y(t1) = K(1+ M p ), M p = e
−

ζπ

1−ζ 2

y(t2 ) = K(1 - e
−2

ζωnπ

ωd

 )

y(t2 ) = K(1− M p
2 )

tn



Underdamped Second Order System
The identification procedure is then as follows:

1.          K = y(∞),

2.                                  

3.  

4.  

�62

y1 = K(1+ M p ), y2 = K(1− M p
2 )⇒ M p = y1 − y2

y1

M p = e
−

ζπ

1−ζ 2

⇒ ζ =
ln M p

π 2 + (ln M p )2

t1 = π
ω d

,t2 = 2π
ω d

ω n = π
t2 − t1( ) 1−ζ 2

,τ = 1

ω n

Prove



Example: Underdamped System
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Example: SI of  Second-order System

�64

Consider  a  measured step  response  shown that  has  been measured 
from the steady-state characterized by the input variable at the value 
u(0) = 0.2 changed to the value u(∞) = −0.3.

Such  a  step  response  can  be  obtained  for  example  from a  U-tube 
manometer by a step change of the measured pressure.

-2.525



Example: SI of  Second-order System

�65

The measured step response is first shifted to the origin by a value 
of y0 = −2.3608 and then normalised – divided by the step change of 

theinput Δu = 0.5.

0.33



�66

The measured step response is first shifted to the origin by a value 
of y0 = −2.3608 and then normalised – divided by the step change 

of theinput Δu = 0.5.

The  values  of  the  first  maximum and  minimum are  found  as 
[15.00; 0.38] and [30.50; 0.32], respectively
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K = 0.33, ζ = 0.51, and      = 4.22.τ



�68

Smith’s Method

Fitting Second -order Models



Smith’s Method

The assumed model:

1. Determine       and      from the step response.

2. Find       and          From the following Figure.

3. Find 

�69

t20 t60

ζ t60

τ
τ



Smith’s method
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Example

�71

t20 =1.85min.; t60 =5min.

t20

t60

= 0.37 ⇒ζ = 1.3,

t60

τ
= 2.8 ⇒ τ = 1.79min.

τ1 = 3.81min.;τ 2 = 0.84 min.

G(s) = 1

3.2s2 + 3.58s +1
= 1

(3.81s +1)(0.84s +1)

because the system is overdamped, the two time const. can be 
calculated (see slide 56).



Second-Order Models &Time DELAY

�72

When fitting 2nd order models, the time delay must be estimated 

with caution.

When              , there is an inflection point, tangent method 

indicates a time delay.

Visual determination of time delay is recommended by graph. 

estimation and trial and error to have a good fit.

Hence, the model

θ = Td



Identification from 
Impulse Responses

A classical Method
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Impulse response identification 

 A rectangular function can be used to depict the opening and 
closing of a valve regulating flow into a tank.

A unit rectangular pulse can expressed as: 

It is clear that f (t) may be represented by the difference of two 
functions
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Impulse response identification 

 If we allow h  to shrink to zero, we obtain a new function which is zero 
everywhere except at the origin, where it is infinite. 

 However, it is important to note that the area under this function always 
remains equal to unity.

Theoretically, the impulse function, which is denoted with δ (t), can be 
defined as: 
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A direct approach is to apply an impulse input and 
observe the response.

Consider the response of a first order system to a pulse 
input of amplitude (1 / h) and a duration h. 

If the time duration of the input is sufficiently small 
compared with the system time constant T, then the 
response is approximately a unit impulse response.

Note that if h < 0.1T, the response of the system is almost 
identical to the unit impulse response.  

!76

 Impulse response identification 



!77

 Impulse response identification 



For a system TF G(s)

!78

 Impulse response identification 

Y (s) = G(s)X(s), impulse I / P : R(s) = 1

Y (s) = G(s)



!79

First-order System

Impulse Response



For a First order system:

!80

 Impulse response of  
a First Order System 

G(s) =
K

Ts +1
=

K
T

S +
1

T

y(t) = g(t) =
K

T
e
−
t

T



Find K from the initial value of the variable y (t):

Find T by setting t=T in y(t):
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 Impulse response of  
a First Order System 

y(0) =
K

T

y(T ) =
K

T
e
−1
= 0.368

K

T



Example: Find the transfer function of the following impulse 
response:

!82

y(0) =
K

T
= 0.6667

y(T ) = 0.368*
K

T

y(T ) = 2.453

⇒T = 2.9sec.

K

T
= 0.6667

⇒ K = 1.933

G(s) =
1.933

3s +1
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Second-order System

Impulse Response



The unit impulse response of an underdamped 2nd 
order system is

!84

 Impulse response of  a 2nd order System 

Y (s) =
ω

n

2

s
2
+ 2ζω

n
s +ω

n

2
, 0 <ζ <1

y(t) =
ω n

1−ζ 2
e
−ζωnt sin(ω dt),

ω d =ω n 1−ζ 2



The parameters are found as follows:

     is the period of one oscillation, then find
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 Impulse response of  a 2nd order System 

ω
d
=
2π

τ
,

ω
n
=

ω
d

1−ζ 2

τ



The damping ratio can be found by log-decrement 
method

where x(t) is the amplitude at time t and x(t+nT) is the 
amplitude of the peak n periods away, where n is 
any integer number of successive, positive peaks.
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 Impulse response of  a 2nd order System 



Example: Underdamped System
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!88

Example

τ

τ

τ



!89

Example
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Example
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 Impulse response of  a 2nd order System 
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 Impulse response of  a 2nd order System 
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Identification From 
Frequency Response

A classical Method
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�94

 In sinusoidal circuit analysis, if we left the amplitude of the 
sinusoidal source remain constant and vary the frequency, we 
obtain the circuit's frequency response. 

G( jω ) = Re
jφ

G( jω ) = Re
jφ

Frequency Response



Frequency Response [5]

�95

G( jω ) = Re
jφ



Frequency Response
The frequency response may be regarded as a complete description of 
the sinusoidal steady-state behavior of a circuit as a function of 
frequency. 

The frequency response of a circuit is the variation in its behavior with 
change in signal frequency. 
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Identification From Frequency 
Response

Bode Plot
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Bode Plot

Bode plots are semi log plots of the magnitude (in decibels) and phase (in 
degrees) of a transfer function versus frequency. 

 The frequency range required in frequency response is often so wide that 
is inconvenient to use a linear scale for the frequency axis.

 Here, there is a more systematic way of locating the important features 
of the magnitude and the phase plots of transfer function. 

On a log scale (e.g., dB), the product turns into a sum. Thus, if we plot the 
behavior of each term, we can then simply add the plots to find the total 
behavior.

 For these reasons, it has become standard practice to use a logarithmic 
scale for the frequency axis and a linear scale in each of the separate plots 
of magnitude and phase. 
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Identification by Bode Plot

A Bode plot is a standard format for plotting frequency response 
of LTI systems. 

Sine wave inputs are applied to the systems. 

Steady state output is observed (Magnitude ratio R and phase Ф). 

Use R and Ф plots to estimate the various break frequencies 
(poles and zeros) of the transfer function. 
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Identification by Bode Plot

Low 'equency indicate the type of the system. 

Intermediate frequency indicates the existence of zeros.

If the poles and zeros are too close, it is so difficult to 
estimate accurately their locations. 

 A decade is the frequency band from w to 10 w. 

�100



�101

Identification by Bode Plot

Low 'equency indicate the type of the system. 



Identification by Bode Plot

The following table provides a few gains with the 
corresponding values in decibels. 
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Identification by Bode Plot

If  gain > 1 then +ve db.  

If  gain < 1 then -ve db.  

If  gain = 1 then 0 db. 
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Asymptotic properties of  Bode Plot [6] 

Single pole

�104

H (s) =
a

s + a



Asymptotic properties of  Bode Plot 

�105

H (s) =
a

s + a

Magnitude response

• Low-frequency asymptote (ω → 0), flat

• Breakpoint at ω = a

• High frequency asymptote, –20 dB/decade

• Actual curve is –3 dB below breakpoint

Phase response

• Low frequency asymptote = 0°

• –45° at breakpoint (ω = a)

• High frequency asymptote = –90°

• Central slope crosses 0° at ω ≈ a/5, –90° at ω ≈ 5a



Asymptotic properties of  Bode Plot 
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H (s) =
s + b

b

Single zero



Asymptotic properties of  Bode Plot 

�107

Magnitude response

• Low-frequency asymptote (ω → 0), flat

• Breakpoint at ω = b

• High frequency asymptote, +20 dB/decade

• Actual curve is +3 dB above breakpoint

Phase response

• Low frequency asymptote = 0°

• +45° at breakpoint (ω = b)

• High frequency asymptote = +90°

• Central slope crosses 0° at ω ≈ b/5, +90° at ω ≈ 5b

H (s) =
s + b

b



Asymptotic properties of  Bode Plot 

Double pole,

�108

H (s) =
a

2

(s + a)
2



Asymptotic properties of  Bode Plot 

�109

Magnitude response

• Low-frequency asymptote (ω → 0), flat

• Breakpoint at ω = a

• High frequency asymptote, –40 dB/decade

• Actual curve is –6 dB below breakpoint

Phase response

• Low frequency asymptote = 0°

• –90° at breakpoint (ω = a)

• High frequency asymptote = –180°

• Central slope crosses 0° at ω ≈ a/5, –180° at ω ≈ 5a

H (s) =
a

2

(s + a)
2



Asymptotic properties of  Bode Plot 

Second order response

�110

H (s) =
ωn2

s
2
+ 2ζωns +ωn2



Asymptotic properties of  Bode Plot 

 For ζ≥1, the second order system is equivalent to two first-
order systems in series. 

for ζ < 0.707, the Magnitude curves attain maxima in the 
vicinity of  ω/ωn=1.  

This can be checked by differentiating the expression for the 
magnitude with respect to ω/ωn  and setting the derivative to 
zero.
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H (s) =
ωn2

s
2
+ 2ζωns +ωn2



Asymptotic properties of  Bode Plot 
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H (s) =
ωn2

s
2
+ 2ζωns +ωn2



Asymptotic properties of  Bode Plot 

Second order underdamped response
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H (s) =
ωn2

s
2
+ 2ζωns +ωn2



Bode Plot properties of  underdamped 2d 
order System 
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Magnitude response

• Low-frequency asymptote (ω → 0), flat

• Breakpoint at ω = ωn

• High frequency asymptote, –40 dB/decade

• is at height 1/(2ζ)

• When ζ<0.707, the actual maximum occurs at                                       ,   

and the actual maximum (Resonant peak) value is 

• For sufficiently small ζ, this point coincides with ωn and 1/(2ζ).

ω
r
 = ω

n
 1 –  2ζ 2

1

2ζ 1−ζ 2

H (s) =
ωn2

s
2
+ 2ζωns +ωn2



Asymptotic properties of  Bode Plot 
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Phase response

• Low frequency asymptote = 0°

• –90° at breakpoint (ω = a)

• High frequency asymptote = –180°

• Central slope crosses 0° at                     

H (s) =
ωn2

s
2
+ 2ζωns +ωn2

ω ≈
ω

n

5
ζ

, −180 at ω ≈ω
n
5
ζ



ID from Bode plot
Example
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Example1: using the following Bode plot, find the system 
model and identify its parameters. 



�118

1. From Mag. plot: High frequency asymptote, –40 dB/decade with flat low frequency 
mag.

2. From phase plot: the break frequency is at                               , hence the model is          φ(ω
n
) = −90

o

H (s) =
ωn2

s
2
+ 2ζωns +ωn2
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ω
n
= 2rad / sec.,From phase plot,                           the central slope crosses

      
φ = −180

o
at ω = 9rad / sec. ⇒ 9 = 2 × 5

ζ
⇒ 4.5 = 5

ζ
⇒ζ = 0.935
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H (s) =
4

s
2
+ 3.6s + 4
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Example2: using the following Bode plot, find the system 
model and identify its parameters. 
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From Mag. & phase plots, we have two simple poles and a simple zero: 

H (s) =
K(s z

1
+1)

(s p
1
+1)(s p

2
+1)
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To find K, 

H (s) = 4.9545
(s 9.9 +1)

(s 0.034 +1)(s 60 +1)
=

10(0.1s +1)

s
2
+ 60.03s + 2.04

20 log H ( jω )
ω=0

= 13.9dB, 20 log(K ) = 13.9dB ,K = 4.955
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Non-parametric Identification

◦ Nonparametric identification techniques provide a very effective and simple 

way of finding model structure in data sets without the imposition of a 

parametric one.

◦ Commonly, the initial process to carry out is the nonparametric identification

◦ If it were suitable, the parametric identification should be performed



Parametric vs. Non-parametric model

(B) The black box, nonparametric equivalent of  the same system is 

the white curve representing the (sampled) unit impulse response 

(UIR). 

• Convolution of  the input time series x(t) with the system’s UIR h(t)  

generates the system’s output time series y(t): 

�X



Useful Definitions & Tools

◦ Discrete-time signals

A discrete-time signal    y(k) := yc (kTs) is the sampling of the 

continuous-time signal yc

◦ Ts is the sampling period. 

◦ k   is an integer running index: k = 1, 2, … .

◦ The sampling frequency ωs is defined by ωs = 2π/Ts



Useful Tools & Recalls

◦ Discrete-time models are represented by difference equations:

! " + $%! " − 1 +⋯+ $)! " − * = ,%- " +⋯+ ,.- " −/
Or

! " = −0$1! " − 2
)

13%
+0,4- " − 5

.

43%



ØIn signal processing, total energy of:

-A Continues signal x(t):                                  -A Discrete signal x(n): 

ØThe signal power in

-A Continues signal x(t) is                              -A Discrete signal x(n) is



◦ A signal can be categorized into energy signal or power signal.

◦ An energy signal has a finite energy, 0 < E < ∞. (e.g. exponential decay).

◦ The power of an energy signal is 0.

◦On the contrary, the power signal is not limited in time. (e. g. sine wave).

◦ The energy of a power signal is infinite

2) 6 * = -(*) unit step: P = lim=→?
%

@=A%∑ - * @)3=)3C= = lim=→?
=A%
@=A% = %

@ .



Useful Tools: Random Variables

◦ Continuous random variables are random quantities that are measured on a continuous 

scale. Typically random variables that represent, for example, time or distance will be 

continuous rather than discrete. 

◦ Discrete random variables can take on only a sequence of values, usually integers. For 

example - Number of broken eggs in a batch or the number of bits in error in a 

transmitted message.

◦ Random variables are usually denoted by capital letters	F. The values of the variables are 

usually denoted by lower case letters 6.



Useful Tools & Recalls
◦ A stochastic system: systems in which the time variables change randomly.

◦ do not always produce the same output for a given input. 

◦ A few components of systems (that can be stochastic in nature) include: 

stochastic inputs, random time-delays, noisy (modelled as random) 

disturbances, and even stochastic dynamic processes.

◦ The variables can be characterized by a probability function (i.e. they are 

statistically related).



Recalls: stochastic system

◦Wide-sense Stationary process is a stochastic process whose mean

function and its correlation function do not change by time shifts. 

◦ A process is ergodic : if its statistical properties can be deduced from a 

single, sufficiently long, random sample of the process.



Stationarity & Ergodicity [2]



Stationarity & Ergodicity [2]



Useful Tools: 
◦ Density Function [1] f(x) describes the probability distribution of a continuous random 

variable X. It has the following properties

◦ f(x)≥0 for all x.

◦ ∫ H 6 I6?
C? = 1. 

◦ A random variable X can be obtained by picking a point at random from under the 

density curve f(x) and then reading off the x-coordinate of that point.

◦ If X is a discrete random variable then f(x) is the Probability function and ∑ 	H(6)J =
	∑ 	K(F	 = 	6)J = 	1.



H 6 = 1
2M N(CO.PJ

@)



◦ Example1: Suppose the income (in tens of thousands of dollars) of people in a community

can be approximated by a continuous distribution with density

H 6 = Q26C@							2H	6 ≥ 20														2H	6 < 2
a) Find the probability that a randomly chosen person has an income between $30, 000 

and $50,000. 

b) Find the probability that a randomly chosen person has an income of at least $60,000.



◦ Example 1:

◦ (a)Sol. Let X be the income of a randomly chosen person. The probability

that a randomly chosen person has an income between $30,000 and 

$50,000 is



Useful Tools: 

◦ Mean or Expected value[1] Ε(6) of a random variable 6 is the long-run 

average value of repetitions of the experiment it represents.

◦ The arithmetic MEAN of the values converges to Ε(6)	as the number of 

repetitions approaches infinity.

◦ The expected value is also known as the expectation, average, mean 

value.



◦ For a continuous random variable, the mean VF of a continuous random variable F with 

probability density function H(6) is

VF = W[F] = Z 6	H 6 I6?
C?

, 		H 6 ≥ 0

◦ For a discrete random variable the expected value VF	of a discrete random 

variable X with probability function K(6) is

VF = W[F] = 06		K 6
J

, 					K 6 ≥ 0



◦ If we have two random signals or variables, their averages can reveal how the two signals 

interact. 

◦ If we have a random process in which only one sample can be viewed at 

a time, then we will often not have all the information available to 

calculate the mean using the density function as shown above. 



◦ When we can not view the entire ensemble of the random process, or when f(x), P(x) are 

unknown, we must use time average. 

◦ The time averages will also only be taken over a finite interval T since we will only be able to see 

a finite part of the sample.

◦ Generally, this will only give us acceptable results for independent and ergodic process.

◦ The mean value of an ergodic random process can be estimated by

F\ 				= 			%] 		∫ F ^ 		d^]
O

◦ For discrete ergodic process the mean is estimated as   F\ =		 %= 		∑ F[2]=13%



◦ Example 3: What is the expected value of the continuoes random variable 

X which is normally distributed, i.e. 

H 6 = 1
2M N(CO.PJ

@)

◦ Sol. 



◦ Example 1: X is a discrete random variable, the table below defines a 

probability distribution for X. What is the expected value of X?

◦ Sol.

◦ W F = ∑6K(F)
◦ W F = −40 0.12 + −30 0.04 + −20 0.05 + −10 0.17
◦ W F = −8.7.



◦ Example 2: You toss a coin until a tail comes up. P(x) = 1/2x. What is E[X]?

◦ Sol. 

◦ Insert your “x” values into the first few values for the formula, one by one:

E[X]=1/20 + 1/21 + 1/22 + 1/23 + 1/24 + 1/25.

◦ = 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 = 1.96875.

◦ Note: What you are looking for here is a number that the series converges on.

◦ In this case, it converges to 2, so that is your EV.

◦ The function must stop at a particular value. If it doesn’t converge, then there is

no Expected Value.



◦ The variance is a measure of spread data around their means.

Var F = h2 = 	W[				 F − W F 2				]
h2 = 	Z 6 − F\ 2

?
C?

H 6 I6

◦ This can be rewritten as:

h2 = F@ − (F\)@
h2 = W[F@] − (W F )2
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◦ The most common way to describe the range of variation is standard 
deviation(i). 

◦ The standard deviation is simply the positive square root of the variance.

…_________________...



◦ Example [1]: Suppose a train arrives shortly after 1:00 PM each day, and 
that the number of minutes after 1:00 that the train arrives can be modeled 

as a continuous random variable with density

H 6 = Q2 1 − 6 						2H				0 ≤ 6 ≤ 10														otherwise
Find the mean and standard deviation of the number of minutes after 1:00 

that the train arrives.



◦ Example [1]: cntd..



◦Mean and variance are defined for single random variable or stochastic 
process.

◦ In contrast correlation and covariance are defined for two random 

variables or stochastic processes. 

◦ Both correlation and covariance, measure the similarity between two 
random variables or stochastic processes.

qrss F, t = W F. t
qru F, t = W F − VJ . t − Vv



qrss F, t = W F. t
qru F, t = W F − W[F] . t − W[t]

◦ If E[F] = W[t] = 0,	correlation and covariance are identical. 

◦ If X=Y then the covariance is equivalent to variance. 

◦ If X=Y then the correlation is auto-correlation otherwise cross-correlation

◦ Two random variables are uncorrelated if qrss F, t = W F. t = W F . W[t]



◦ Autocorrelation is the linear dependence of a variable with a delayed 

copy of itself as a function of delay.

◦ It is a mathematical tool for finding repeating patterns, such as the 

presence of aperiodic signal which has been buried under noise, or 

identifying the missing fundamental frequency in a signal implied by its 

harmonic frequencies. 

◦ It is often used in signal processing for analyzing functions.



◦ Autocorrelation for wide-sense stationary process is defined as

xFF y = W F(^). F(^ + y)
◦ For processes that are also ergodic, the expectation can be replaced by 

the limit of a time average:

xFF y = lim]→? 	%] 	∫ F ^ F ^ + y d^ ]
O for continuos (power signal) 

xtt " = lim=→? 	 %=∑ t 2 t(2 + ")=13% for discrete (power signal)



◦ For power signals autocorrelation at a shift y = 0, the autocorrelation is the 

average signal power of the signal:   xFF 0 = lim]→?	%] 	∫ F ^ @ d^ .]
O

◦ The cross-correlation function between two variables X and Y

xFt y = lim]→? 	%] 	∫ F ^ t ^ + y d^ ]
O for continuos (power signal) 

xFt " = lim=→? 	 %=∑ F 2 t(2 + ")=13% for discrete (power signal)



◦ Autocorrelation for energy signals

xFF y = 	∫ F ^ F ^ + y d^ ?
C? for continuos 

xtt " = 	∑ t 2 t(2 + ")?13C? for discrete

◦ Cross-correlation for energy signals

xFt y = 	∫ F ^ t ^ + y d^ ?
C? for continuos 

xFt " = 	∑ F 2 t(2 + ")?13C? for discrete

◦ For energy signal, autocorrelation at zero lag is the energy of the 

signal:xFF 0 = Wz



Estimation of correlation functions for a finite (unlimited) length of data T, N:

{rss F, t = xFt y ≈	 %] 	∫ F ^ t ^ + y d^ ]
O (for continuos) 

xFt " ≈ %
=∑ F 2 t(2 + ")=13% (for discrete )



Recalls: stochastic system

◦A stochastic process X(t) is Wide-sense Stationary process 

(WSS) if Its mean function and its correlation function do not 

change by time shifts: 

1. W F = Vz ^ = Vz ,	 for all ^ ∈ ℝ.

2. xzz ^%, ^@ = xzz ^@ − ^% ,	 for all ^%, ^@ ∈ ℝ. 



These properties hold for WSS process:

◦ A fundamental property of the autocorrelation is symmetry or it is an even function:

xFF y = xFF −y for all y ∈ ℝ
◦ For the cross-correlation: xFt y = xtF −y for all y ∈ ℝ
◦ The continuous autocorrelation function reaches its peak at the origin for any delay y

xFF y ≤ xFF 0
◦ For Cross-correlation xFt 0 is not necessary > xFt y for y ≠ 0.
◦ The autocorrelation of a continuous-time white noise signal will have a strong peak 

at y = 0	 and will be absolutely 0 for all other y ≠ 0.







Examples 1 & 2 are taken from lecture notes of Auto and cross correlation by A. Abu-Hudrouss, Islamic University 
Gaza, 2008.





xÅÅ ^





◦ The term "white" refers to the frequency domain characteristic of noise. 

◦ The term white noise is analogous to white light which contains  all visible 

light frequencies.

◦ Ideal white noise has equal power per unit bandwidth, which results in a flat 

power spectral density (PSD) across the frequency range of interest. 

◦ PSD shows the strength of the variations (strong/weak energy) as a function 

of frequency. 

◦ For white noise, the power in the frequency range from 100 Hz to 110 Hz is 

the same as the power in the frequency range from 1000 Hz to 1010 Hz.



q Ideal white noise  has zero mean: W[F(^)] = 0. 

q A signal F ^ is called a white noise sequence if X is a sequence of independent random 

variables, i.e. W[ F ^ F ^	 − y ] 	= Rxx(τ)=0	for all  y ≠ 0.

If the noise has a mean of zero, there will be as many positive products as there are negative products.

Hence they will all sum up to zero.





◦ The most common way to describe the range of variation is standard 
deviation(i). 

◦ The standard deviation is simply the positive square root of the variance.

…_________________...



◦ Example [1]: Suppose a train arrives shortly after 1:00 PM each day, and 
that the number of minutes after 1:00 that the train arrives can be modeled 

as a continuous random variable with density

H 6 = Q2 1 − 6 						2H				0 ≤ 6 ≤ 10														otherwise
Find the mean and standard deviation of the number of minutes after 1:00 

that the train arrives.



◦ Example [1]: cntd..



◦Mean and variance are defined for single random variable or stochastic 
process.

◦ In contrast correlation and covariance are defined for two random 

variables or stochastic processes. 

◦ Both correlation and covariance, measure the similarity between two 
random variables or stochastic processes.

qrss F, t = W F. t
qru F, t = W F − VJ . t − Vv



qrss F, t = W F. t
qru F, t = W F − W[F] . t − W[t]

◦ If E[F] = W[t] = 0,	correlation and covariance are identical. 

◦ If X=Y then the covariance is equivalent to variance. 

◦ If X=Y then the correlation is auto-correlation otherwise cross-correlation

◦ Two random variables are uncorrelated if qrss F, t = W F. t = W F . W[t]



◦ Autocorrelation is the linear dependence of a variable with a delayed 

copy of itself as a function of delay.

◦ It is a mathematical tool for finding repeating patterns, such as the 

presence of aperiodic signal which has been buried under noise, or 

identifying the missing fundamental frequency in a signal implied by its 

harmonic frequencies. 

◦ It is often used in signal processing for analyzing functions.



◦ Autocorrelation for wide-sense stationary process is defined as

xFF y = W F(^). F(^ + y)
◦ For processes that are also ergodic, the expectation can be replaced by 

the limit of a time average:

xFF y = lim]→? 	%] 	∫ F ^ F ^ + y d^ ]
O for continuos (power signal) 

xtt " = lim=→? 	 %=∑ t 2 t(2 + ")=13% for discrete (power signal)



◦ For power signals autocorrelation at a shift y = 0, the autocorrelation is the 

average signal power of the signal:   xFF 0 = lim]→?	%] 	∫ F ^ @ d^ .]
O

◦ The cross-correlation function between two variables X and Y

xFt y = lim]→? 	%] 	∫ F ^ t ^ + y d^ ]
O for continuos (power signal) 

xFt " = lim=→? 	 %=∑ F 2 t(2 + ")=13% for discrete (power signal)



◦ Autocorrelation for energy signals

xFF y = 	∫ F ^ F ^ + y d^ ?
C? for continuos 

xtt " = 	∑ t 2 t(2 + ")?13C? for discrete

◦ Cross-correlation for energy signals

xFt y = 	∫ F ^ t ^ + y d^ ?
C? for continuos 

xFt " = 	∑ F 2 t(2 + ")?13C? for discrete

◦ For energy signal, autocorrelation at zero lag is the energy of the 

signal:xFF 0 = Wz



Estimation of correlation functions for a finite (unlimited) length of data T, N:

{rss F, t = xFt y ≈	 %] 	∫ F ^ t ^ + y d^ ]
O (for continuos) 

xFt " ≈ %
=∑ F 2 t(2 + ")=13% (for discrete )



Recalls: stochastic system

◦A stochastic process X(t) is Wide-sense Stationary process 

(WSS) if Its mean function and its correlation function do not 

change by time shifts: 

1. W F = Vz ^ = Vz ,	 for all ^ ∈ ℝ.

2. xzz ^%, ^@ = xzz ^@ − ^% ,	 for all ^%, ^@ ∈ ℝ. 



These properties hold for WSS process:

◦ A fundamental property of the autocorrelation is symmetry or it is an even function:

xFF y = xFF −y for all y ∈ ℝ
◦ For the cross-correlation: xFt y = xtF −y for all y ∈ ℝ
◦ The continuous autocorrelation function reaches its peak at the origin for any delay y

xFF y ≤ xFF 0
◦ For Cross-correlation xFt 0 is not necessary > xFt y for y ≠ 0.
◦ The autocorrelation of a continuous-time white noise signal will have a strong peak 

at y = 0	 and will be absolutely 0 for all other y ≠ 0.







Examples 1 & 2 are taken from lecture notes of Auto and cross correlation by A. Abu-Hudrouss, Islamic University 
Gaza, 2008.
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◦ The term "white" refers to the frequency domain characteristic of noise. 

◦ The term white noise is analogous to white light which contains  all visible 

light frequencies.

◦ Ideal white noise has equal power per unit bandwidth, which results in a flat 

power spectral density (PSD) across the frequency range of interest. 

◦ PSD shows the strength of the variations (strong/weak energy) as a function 

of frequency. 

◦ For white noise, the power in the frequency range from 100 Hz to 110 Hz is 

the same as the power in the frequency range from 1000 Hz to 1010 Hz.



q Ideal white noise  has zero mean: W[F(^)] = 0. 

q A signal F ^ is called a white noise sequence if X is a sequence of independent random 

variables, i.e. W[ F ^ F ^	 − y ] 	= Rxx(τ)=0	for all  y ≠ 0.

If the noise has a mean of zero, there will be as many positive products as there are negative products.

Hence they will all sum up to zero.
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Black 
box

Ø Actual system is Linear Time Invariant LTI.

Ø Process                                                                              is the convolution operator.

Ø Estimates of ! " using time domain nonparametric methods.

Ø Test the error ! " − !$(") 	for all " ≥ 0.

+ " = ! " ⨂. " + 0 " , where	⨂



v In transient analysis, we determine the system’s response to a particular 

signal (typically a pulse or a step signal).

v By applying a pulse or step input signal to the system, the pulse or step 

response can be observed from the output.

v Generally this provides good insights into important properties of the 

system, as e.g. the presence and length of time delays, static gain and 

time constants.



• Impulse Response (discrete)

+ 67 =8! 9 . 67 − 9 + 0 67
:

;<=
• ! 6 = ∑ ! 9:;<? is the impulse response, 6 = 0, 1, 2, …	is the sampling instants, T is sampling 

time.

• For ease of notation, assume T is one time unit and use k to enumerate sampling instants.

• For identification, the input u and output y are recorded and the system g(k) will be 

modelled with a Finite Impulse Response (FIR) CD E , k = 0, 1, 2, ...,M.

• For a causal system the lower limit of the summation can not be less than zero. 



• Impulse Response Analysis (discrete)

+ 6 =8! 9 . 6 − 9 + 0 6
:

;<=

If the above system is  subjected to a pulse I/P:  u k = HI, 						6 = 00, 						6 ≠ 0
Then                                         + 6 = I! 6 + 0(6)
If the signal to noise ratio (SNR) is High, then the impulse response can be estimated:

!$ 6 = +(6)
I



• Impulse Response Analysis (discrete)

If the signal to noise ratio (SNR) is High, then the impulse response can be estimated:

!$ 6 = +(6)
I

With error:

! 6 − !$(6) = 0(k)
I

Ø Weakness

Ø For small error, K must be very HIGH.

Ø Many physical process do not allow such high pulse.

Ø Such an input may cause unwanted nonlinear dynamic behavior that would 

disturb the linearized behavior already set to the model.



• Step Response Analysis (discrete)

+ 6 = ∑ ! 9 . 6 − 9 + 0 6:;<= (1)

If the system in eq. (1) is subjected to a step I/P:  u k = HI, 					6 ≥ 00, 						6 < 0
Then                                         + 6 = I∑ ! 9M;<= + 0(6)

From this, estimates of ! 6 can be obtained as:

!$ 6 = + 6 − +(6 − 1)
I

With error                          ! 6 − !$(6) = N M ON(MO?)
P



• Step Response Analysis (discrete)

ü Practical for observing general features (time delay, static gain, response 
shape..).

Weakness

Ø Estimation of impulse response coefficients suffer from large error term.



• Correlation Analysis (Discrete)

Q E = C E ⨂R E + S E
Let R E be a  random Wide Sense Stationary (WSS) process independent of noise S E
then Q(E), is also a random process.

Multiply Q E by . E + T and take the expected value :

U + 6 . 6 + V =8! 9 	U . 6 − 9 . 6 + V + U[0 6 . 6 + V ]
:

;<=



U + 6 . 6 + V =8! 9 	U . 6 − 9 . 6 + V + U[0 6 . 6 + V ]
:

;<=
As . " 	YZ[	0(")	are completly uncorrelated then U[0 6 . 6 + V ] ≡ 0	(or ]N^ V = 0) thus

]_^ V = 8! 9 ]^^ 9 + V
:

;<=
From correlation properties, ]_^ −V = ]^_ V then

]_^ O` = ]^_ V =8! 9 ]^^ 9 − V
:

;<=
Again using the property]^^ −V = ]^^ V ,then aRR b − T = aRR(T− b) then

]^_ V = 8! 9 ]^^ V − 9
:

;<=
Or aRQ T = C T ⨂aRR(T) (2)
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aRQ T = C T ⊗aRR (T) (2)

To solve g(k) from eq. (2)  two cases will be distinguished:

1. If u(k) is a white noise sequence with E .e 6 = fe:

]^_ V = CD V ⊗ ]^^ 0 = CD V fe

CD T = aRQ(T)
hi

With the assumption the process is ergodic, then from N measurements the

estimated crosscorrelation is

aRQ T = j R E Q E+ T = k
l∑ R b Q(b + T)lOkb<m



1. If u(k) is a white noise sequence with E .e 6 = fe:

CD T = aRQ(T)
hi

Where aRQ T = k
l∑ R b Q b + TlOkb<m

CD(T) = k
l8 R b Q(b + T)
lOk

b<m



aRQ T = C T ⨂aRR(T)
2. If u(k) is not a white noise signal:

• Solution 1:

i) Estimate the correlation function

aRR T = k
l8 R b R(b + T)
lOk

b<m
ii) and next solve the linear set of M equations for CD E :

aRQ T = 8 CD b aRR(T − b)
nOk

b<m
		op					aRQ T = C$ T ⨂	aRR(T)



2. How to estimate CD E If u(k) is not a white noise signal (Solution1):

aRQ T = 8 CD b aRR(T − b)
nOk

b<m
In matrix form



2. If u(k) is not a white noise signal (Solution1):

NOTE 

For stable systems (without integrator), impulse response goes asymptotically to zero such 

that we can suppose that M is sufficiently large        C E = m for k>M

a)First find aRQ T ,aRR T where T = m,… ,n − k.

b)Next, solve the linear set of M equations for CD T .



2. If u(k) is not a white noise signal 

• Solution 2:  Filter input and output with a pre-whitening filter:

Then using +q and .q,  CD E can be estimated:     CD T = aRrQr(T)
hi



2. If u(k) is not a white noise signal- (Solution 2)

• Finding a pre-whitening filter  s(t):
Try to use a linear model of order n:

s t = k + uktOk + uitOi +⋯+ uwtOw

And look for a best fit of n and an such that the autocorrelation of input is 

minimized (such that Rr is as white as possible).

Where x 6 yO; = 	x 6 − 9 .



Example: Using the following data, find the impulse response g(k) by Correlation method:

															u k = 1,0, … , 0	and	y k = 1, ?e ,
?
~ , … ,

?
e�ÄÅ .

Sol. Since the input u(k) is not white noise, we can solve for g(k) by using matrix form solution:

a) First find aRQ T ,aRR T where T = m,… ,n − k,n = i.

]^_ 0
]^_ 1 = ]^^ 0 ]^^ 1

]^^ 1 ]^^ 0 . !$ 0!$ 1 , 
!$ 0
!$ 1 =		 ]^^ 0 ]^^ 1

]^^ 1 ]^^ 0
O?
. ]^_ 0]^_ 1 ,

]^_ 0 = ?
e∑ . 9 + 9?;<= = ?

e , 					 ]^_ 1 = ?
e∑ . 9 + 9 + 1 = ?

~
?;<= .

]^^ 0 =
?
e∑ . 9 e?;<= = ?

e, 															]^^ 1 = 
?
e∑ . 9 .(9 + 1)?;<= = 0						 ⇒ 					 !$ 0!$ 1 = 1

0.5 .

Homework: find !$ V 	xÑÖ	T = m,… ,n − k,n = Ü. Draw !$ V .



Transient response analysis

ü widely used, fast and simple method to gain insight in system dynamics.

Weakness

Ø hard to determine accurate model (limited input signal size, disturbances, 

noise).

Correlation analysis

ü does not require special input signals (such as impulses).

ü can compensate low SNR by longer measurement periods.



PSEUDO-RANDOM BINARY SEQUENCE

One of the useful periodic signals for 

system identification work is the 

Pseudo-random Binary Sequence (PRBS). 

To produce a PRBS we need: 

- n-bit shift registers and an XOR gate 

- The max. number of states 

( sequence length) for n shift registers is

N = 2 n -1 



PRBS has the following properties:

ü The PRBS characteristics are very similar to those of white noise.

üAPRBS can be used as a test signal instead of white noise provided that it 

is chosen to have a P.D.S which is uniform over the B.W of the system. 

üPRBS are more often used than white noise. 
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