
Third year                              Numerical Analysis using MATLAB               Mechatronics & Computer branch 

1 
 

Introduction 

 Numerical analysis is a branch of Mathematics that deals with devising 

efficient methods for obtaining numerical solutions to difficult Mathematical 

problems. Most of the Mathematical problems that arise in science and 

engineering are very hard and sometime impossible to solve exactly. Thus, 

an approximation to a difficult Mathematical problem is very important to 

make it easier to solve. Due to the immense development in the 

computational technology, numerical approximation has become more 

popular and a modern tool for scientists and engineers. As a result many 

scientific software are developed (for instance, MATLAB, Mathematical, 

Maple etc.) to handle more difficult problems in an efficient and easy way. 

These software contain functions that uses standard numerical methods, 

where a user can pass the required parameters and get the results just by a 

single command without knowing the details of the numerical method. Thus, 

one may ask why we need to understand numerical methods when such 

software are at our hands. In fact, there is no need of a deeper knowledge 

of numerical methods and their analysis in most of the cases in order to use 

some standard software as an end user. However, there are at least three 

reasons to gain a basic understanding of the theoretical background of 

numerical methods. 

1. Learning different numerical methods and their analysis will make a 

person more familiar with the technique of developing new numerical 

methods. This is important when the available methods are not enough or 

not efficient for a specific problem to be solved. 
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2. In many circumstances, one has more methods for a given problem. 

Hence, choosing an appropriate method is important for producing an 

accurate result in lesser time. 

3. With a sound background, one can use methods properly (especially when 

a method has its own limitations and/or disadvantages in some specific 

cases) and, most importantly, one can understand what is going wrong when 

results are not as expected. 

Bracketing Methods 

 The root is located within interval of lower and upper bound. 

 Such methods are said to be convergent because they move closer to the truth 

as the computation progresses. 

Nonlinear equations (finding the roots) 

One of the most frequently occurring problems in scientific work is to 

find the roots of equations of the form 

𝑓(𝑥) = 0                      (1) 

1. Fixed-point Iteration method 

 The idea of this method is to rewrite the equation (1) in the form: 

𝑥 = 𝑔(𝑥)                                      (2) 

Once the iteration function is chosen, then the method is defined as 

follows: 

1. Choose an initial guess x0; 

2. Define the iteration methods as 

𝑥𝑛+1 = 𝑔(𝑥𝑛),          𝑛 = 0, 1, … …. 
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Ex. Solve 𝑓(𝑥) = 𝑥2 − 3𝑥 + 1 by fixed-point iteration method. 

Sol. First make 𝑓(𝑥) = 0: 

𝑥2 − 3𝑥 + 1 = 0 

Second find iteration function: 

𝑥 = 3 −
1

𝑥
 →  𝑥𝑛+1 = 3 −

1

𝑥𝑛
     

Third choose initial guess x0: 

X0 = 1 

𝑥0+1 = 3 −
1

𝑥0
= 3 −

1

1
= 2   So x1 = 2 , x2 = 2.5, x3 = 2.6, x4 = 2.615, x5 = 

2.617 

The root is 2.617 

Ex. Find a real root of the equation 𝑥3 + 𝑥2 − 1 = 0 on the interval [0, 1] 

with an accuracy of 10−4? 

Sol.   

 

X0 = 0.75 
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Which is less than 0.0004. The iteration is therefore terminated and the root 

to the required accuracy is 0.7549. 

 

2. Bisection Method 

 The bisection method is one of the bracketing methods for finding roots 

of an equation. For a given a function 𝑓(𝑥), guess an interval which might 

contain a root and perform a number of iterations, where, in each iteration 

the interval containing the root is get halved. 

2.1. Intermediate value theorem for continuous functions:  

If f is a continuous function and 𝑓 (𝑎) and 𝑓 (𝑏) have opposite signs, 

then at least one root lies in between 𝑎 and 𝑏. If the interval (a, b) is small 

enough, it is likely to contain a single root. 
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Figure (1) Bisection method 

 

 

An interval [𝑎, 𝑏] must contain a zero of a continuous function 𝑓 if the 

product𝑓 (𝑎) 𝑓 (𝑏)  <  0. Geometrically, this means that if 𝑓 (𝑎) 𝑓 (𝑏)  <  0, 

then the curve 𝑓 has to cross the x-axis at some point in between 𝑎 and 𝑏. 

2.2. Bisection Algorithm 

Suppose we want to find the solution to the equation  (𝑥)  =  0 , 

where 𝑓 is continuous. Given a function 𝑓 (𝑥) continuous on an interval 

[𝑎0 , 𝑏0] and satisfying𝑓 (𝑎) 𝑓 (𝑏)  <  0. For n = 0, 1, 2, … until 

termination do: 

Find  𝑥𝑛 =
1

2
(𝑎𝑛 + 𝑏𝑛) 
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If 𝑓(𝑥𝑛) = 0, accept 𝑥𝑛 as a solution and stop. 

Else continue: 

If 𝑓(𝑎𝑛) 𝑓(𝑥𝑛) <  0, a root lies in the interval (𝑎𝑛, 𝑥𝑛). 

Set 𝑎𝑛+1 = 𝑎𝑛, 𝑏𝑛+1 = 𝑥𝑛. 

If 𝑓(𝑎𝑛) 𝑓(𝑥𝑛) >  0, a root lies in the interval (𝑥𝑛, 𝑏𝑛). 

Set 𝑎𝑛+1 = 𝑥𝑛, 𝑏𝑛+1 = 𝑏𝑛. 

Ex. Solve 𝑥3 − 9𝑥 + 1 for the root between 𝑥 = 2 and 𝑥 = 4, by bisection 

method? 

Sol.  
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Ex. Find a real root of the equation 𝑓(𝑥) = 𝑥3 − 𝑥 − 1 = 0 by bisection 

method? 

Sol.  
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H.W:  

1. Find the real root of the equation (𝑥 log10 𝑥 − 1.2 = 0). Correct to five 

decimal places by the false-position method. 

2. Solve the equation (𝑥3 − 9𝑥 + 1 = 0) for the root lying between 2 and 3, 

correct to three significant figures. 
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3. Newton-Raphson Method  

 Methods such as the bisection method and the false position method 

of finding roots of a nonlinear equation 𝑓(𝑥) = 0 (require bracketing of the 

root by two guesses. Such methods are called bracketing methods. These 

methods are always convergent since they are based on reducing the 

interval between the two guesses so as to zero in on the root of the equation. 

In the Newton-Raphson method, the root is not bracketed. In fact, only one 

initial guess of the root is needed to get the iterative process started to find 

the root of an equation. The method hence falls in the category of open 

methods. Convergence in open methods is not guaranteed but if the method 

does converge, it does so much faster than the bracketing methods. 

Algorithm of Newton method 

 The steps of the Newton-Raphson method to find the root of an 

equation 𝑓(𝑥) = 0 are: 
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4. Compare the absolute relative approximate error with the pre-specified 

relative error tolerance, if |𝜖𝑎| > 𝜖𝑠 then go to Step 2, else stop the algorithm. 

Also, check if the number of iterations has exceeded the maximum number 

of iterations allowed. 

Example: Use Newton-Raphson method to find a root of the equation𝑥3 −

2𝑥 − 5 = 0.     (∈𝑠= 0.003) 

Sol.  

1. 𝑓(𝑥) = 𝑥3 − 2𝑥 − 5 and its derivative is 𝑓(𝑥)̀ = 3𝑥2 − 2 

2. 𝑥𝑛+1 = 𝑥𝑛 −
𝑥𝑛

3−2𝑥𝑛−5

3𝑥𝑛
2−2

 

Choosing x0 =2, we obtain 𝑓(𝑥0) = −1 and 𝑓̀(𝑥0) = 10 

𝑥1 = 2 − (−
1

10
) = 2.1 

𝑓(𝑥1) = (2.1)3 − 2(2.1) − 5 = 0.061 

And 𝑓̀(𝑥1) = 3(2.1)2 − 2 = 11.23 

𝑥2 = 2.1 − (
0.061

11.23
) = 2.094568 

The error will be ∈𝑎= |
2.094568−2.1

2.094568
| ∗ 100 = 0.002 

So the root is 2.094568 
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Example: Find a root of the equation 𝑥𝑠𝑖𝑛𝑥 +  𝑐𝑜𝑠 𝑥 =  0. 

Sol. 

1. 𝑓(𝑥) = 𝑥𝑠𝑖𝑛𝑥 +  𝑐𝑜𝑠 𝑥    and 𝑓̀(𝑥) = 𝑥 𝑐𝑜𝑠 𝑥 

2. Hence the iteration formula is 

𝑥𝑛+1 = 𝑥𝑛 −
𝑥𝑛 sin 𝑥𝑛 + cos 𝑥𝑛

𝑥𝑛 cos 𝑥𝑛
 

With 𝑥0 = 𝜋, the successive iterates are given below: 

N Xn F(xn) Xn+1 

0 3.1416 -1.0 2.8233 

1 2.8233 -0.0662 2.7986 

2 2.7986 -0.0006 2.7984 

3 2.7984 0.0 2.7984 

 

Drawbacks of the Newton-Raphson Method 

1. Divergence at inflection points If the selection of the initial guess or an 

iterated value of the root turns out to be close to the inflection point of 

the function f(x) in the equation f(x)=0, Newton-Raphson method may 

start diverging away from the root.  

2. Division by zero 

3. Oscillations near local maximum and minimum Results obtained from 

the Newton-Raphson method may oscillate about the local maximum 

or minimum without converging on a root but converging on the local 

maximum or minimum. Eventually, it may lead to division by a number 

close to zero and may diverge. 
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4. Root jumping in some case where the function f(x) is oscillating and 

has a number of roots, one may choose an initial guess close to a root. 

However, the guesses may jump and converge to some other root. 

4.Secant Method 

A potential problem in implementing the Newton - Raphson method is 

the evolution of the derivative. Although this is not inconvenient for 

polynomials and many other functions, there are certain functions whose 

derivatives may be extremely difficult or inconvenient to evaluate. Graphical 

depiction of the Secant method, this technique is similar the Newton - 

Raphson technique in the sense that an estimate of the root is predicated by 

extrapolating a tangent of the function to the x axis. However, the secant 

method uses a difference rather than a derivative to estimate the slope.   

 

 

Figure (1) Secant method 

 

The rule of secant method as follow: 

𝑥𝑖+1 = 𝑥𝑖 −
𝑓(𝑥𝑖)(𝑥𝑖−1 − 𝑥𝑖)

𝑓(𝑥𝑖−1) − 𝑓(𝑥𝑖)
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Example: Use the secant method to estimate the root of 𝑓(𝑥)  =  𝑒−𝑥  −  𝑥. 

Start with initial estimates of𝑥𝑖−1 = 0, 𝑥𝑖 = 1. 

Sol. 
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Solving simultaneous linear equations 

 Gauss-Elimination Method 

Gauss elimination is one of the oldest and most frequently used methods for 

solving systems of algebraic equations. It is attributed to the famous Gennan 

mathematician, Carl Friedrick Gauss (1777 -1855). This method is the generalization 

of the familiar method of eliminating one unknown between a pair of simultaneous 

linear equations. In this method the matrix A is reduced to the form U by using the 

elementary row operations which include: 

1. Interchange any two rows. 

2. Multiplying or dividing any row by a non-zero constant. 

3. Adding or subtracting of one row to another row. 

 Example 1: Find the solution to the following system of equations using the 

Gauss-elimination method. 

2X1 + 3X2 - X3 = 5 

4X1 + 4X2 - 3X3 = 3 

-2X1 + 3X2 - X3 = 1 

Sol: 

Rearrange equations as follow: 

4X1 + 4X2 - 3X3 = 3    …… (1) 

[2X1 + 3X2 - X3 = 5 ……….. (2)] * (-2) 

[-2X1 + 3X2 - X3 = 1 ……… (3)] * (2) 
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To eliminate X1 from equation (2) multiply it by (-2) and multiply equation 

(3) by (2) we get: 

4X1 + 4X2 - 3X3 = 3 … (1) 

-4X1 - 6X2 + 2X3 = -10 … (2) 

-4X1 + 6X2 - 2X3 = 2 … (3)  

Now by summing equation (2) and equation (3) with equation (1) we get: 

4X1 + 4X2 - 3X3 = 3 … (1) 

[0 - 2X2 - 1X3 = -7 … (4)] *5 

0 + 10X2 - 5X3 = 5 … (5) 

Now to eliminate X2 from fifth equation we multiply equation (2) by (5) we 

get: 

4X1 + 4X2 - 3X3 = 3 … (1) 

0 - 10X2 - 5X3 = -35 … (4) 

0 + 10X2 - 5X3 = 5 … (5) 

Now by summing equation (5) with equation (4) only we get: 

-10X3 = -30 … (5) 

So we get X3 = 3 

Then by substitute the value of X3 in equation (4) or (5) we get: 

X2 = 2 
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Then substitute the value of X3 and X2 in any general equations above we 

get: 

X1 = 1 

So the final values are X1 = 1, X2 = 2, X3 = 3 

Example 2: Find the solution to the following system of equations using the 

Gauss-elimination method. 

3X1 + 2X2 + X3 = 3 

2X1 + X2 + X3 = 0 

6X1 + 2X2 + 4X3 = 6 

Sol: 

Rearrange equations as follow: 

6X1 + 2X2 + 4X3 = 6    …… (1) 

[3X1 + 2X2 + X3 = 3 ……….. (2)] *(-2)  

[2X1 + X2 + X3 = 0 ……… (3)] *(-3) 

Now to eliminate X1 from equation (2) we multiply it by (-2) and to eliminate X1 

from equation (3) we multiply it by (-3) we get: 

6X1 + 2X2 + 4X3 = 6    …… (1) 

-6X1 - 4X2 - 2X3 = -6 ……….. (2) 

-6X1 - 3X2 - 3X3 = 0 ……… (3) 
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Now by summing equation (2) and equation (3) with equation (1) we get: 

6X1 + 2X2 + 4X3 = 6    …… (1) 

0 - 2X2 + 2X3 = 0 ……….. (4) 

0 - 1X2 + 1X3 = 6 ……… (5) 

It can see from the equation (4) & (5) we cannot eliminate X2 or X3. So the 

solution will stop here and we say that the equations are inconsistent. 

 Gauss-Jordan elimination: 

The steps of Jordan elimination as follow: 

1. Form the augmented matrix corresponding to the system of linear 

equations. 

2. Transform the augmented matrix to the matrix in reduced row echelon 

form via elementary row operations. 

3. Solve the linear system corresponding to the matrix in reduced row 

echelon form. 
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Example 2: Solve the following system by using the Gauss-Jordan 

elimination method. 

X + Y + Z = 5 

2X + 3Y + 5Z = 8 

4X + 5Z = 2 

Sol: 

1. Form the augmented matrix. 

 

2. Transform from augmented to reduced form matrix. 
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3. Solve the linear system corresponding to the matrix in reduced row 

echelon form. 

X = 3, Y = 4, Z = -2 

 

 

Example 3: Solve the following system by using the Gauss-Jordan 

elimination method. 

X + 2Y – 3Z = 2 

6X + 3Y – 9Z = 6 

7X + 14Y – 21Z = 13 
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Sol: 

1. Form the augmented matrix. 

 

2. Transform from augmented to reduced form matrix. 

 

 

We obtain a row whose elements are all zero’s except the last one on the 

right. Therefore, we conclude that the system of equations is inconsistent, 

i.e., it has no solutions. 
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Integration  

Integration is the process of measuring the area under a function 

plotted on a graph. Why would we want to integrate a function? Among the 

most common examples are finding the velocity of a body from an 

acceleration function, and displacement of a body from a velocity function. 

Throughout many engineering fields, there are (what sometimes seems like) 

countless applications for integral calculus. Sometimes, the evaluation of 

expressions involving these integrals can become daunting, if not 

indeterminate. For this reason, a wide variety of numerical methods has been 

developed to simplify the integral. There some types of integration which are: 

1. Trapezoidal rule. 

2. Simpsons 1/3 rule. 

3. Simpsons 3/8 rule. 

 One segment Simpsons 1/3 rule 

The trapezoidal rule was based on approximating the integrand 

by a first order polynomial, and then integrating the polynomial over 

interval of integration. Simpson’s 1/3 rule is an extension of 

Trapezoidal rule where the integrand is approximated by a second 

order polynomial. 

 

 

 

 

Figure (1) Function integration 
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For one segment Simpsons 1/3 rule we can applied the following law: 
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The segment width:         

ℎ =
𝑏 − 𝑎

2
 

Hence the Simpson’s 1/3 rule is given by: 

∫ 𝑓(𝑥)𝑑𝑥 =
ℎ

3
[𝑓(𝑎) + 4𝑓 (

𝑎 + 𝑏

2
) + 𝑓(𝑏)]

𝑏

𝑎

 𝑓𝑜𝑟 𝑜𝑛𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 

Example 1: The distance covered by a rocket in meters from t = 8s to t = 30 

s is given by: 

 

a) Use Simpson’s 1/3 rule to find the approximate value of x. 

b) Find the true error, E. 

c) Find the absolute relative true error, 𝜖 

Sol: 

a) ∫ 𝑓(𝑥)𝑑𝑥 =
ℎ

3
[𝑓(𝑎) + 4𝑓 (

𝑎+𝑏

2
) + 𝑓(𝑏)]

𝑏

𝑎
 

a = 8, b = 30 

 

 

 

 

(
𝑎+𝑏

2
) = 19 

 

 

𝑥 =
30 − 8

6
[𝑓(8) + 4𝑓(19) + 𝑓(30)] = 11065.72𝑚 

 

 

 



Third year  Numerical Analysis using MATLAB   Mechatronics & Computer branch 

4 
 

b) The exact value of the above integral is: 

 

 

So the true error is: 

𝐸 = 𝐸𝑥𝑎𝑐𝑡 𝑣𝑎𝑙𝑢𝑒 − 𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 = 11061.34 − 11065.72 = −4.38𝑚 

c) The absolute relative true error is: 

𝜖 = |
𝑇𝑟𝑢𝑒 𝑒𝑟𝑟𝑜𝑟

𝐸𝑥𝑎𝑐𝑡 𝑣𝑎𝑙𝑢𝑒
| ∗ 100 = |

−4.38

11061.34
| ∗ 100 = 0.0396% 

 

 

 Multiple segment Simpsons 1/3 rule 

              Just like in multiple-segment trapezoidal rule, one can subdivide the 

interval [a,b] into n segments and apply Simpson’s 1/3 rule repeatedly over 

every two segments. Note that n needs to be even. Divide interval [a,b] into 

n equal segments, so that the segment width is given by n: 

ℎ =
𝑏 − 𝑎

𝑛
 

Now: 
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∫ 𝑓(𝑥)𝑑𝑥 =
ℎ

3
[𝑓(𝑎) + 4 ∑ 𝑓(𝑥𝑖) + 2 ∑ 𝑓(𝑥𝑖)

𝑛−2

𝑖=2
𝑖=𝑒𝑣𝑒𝑛

𝑛−1

𝑖=1
𝑖=𝑜𝑑𝑑

+ 𝑓(𝑏)]
𝑏

𝑎

 𝑓𝑜𝑟 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 

 

Example 2: Use 4-segment Simpson’s 1/3 rule to approximate the distance 

covered by a rocket in meters from t = 8 s to t = 30 s as given by: 

 

a) Use four segment Simpson’s 1/3rd Rule to estimate x. 

b) Find the true error, E. 

c) Find the absolute relative true error, 𝜖 

Sol: 

a) Using n segment Simpson’s 1/3 rule, 

n = 4, a = 8, b = 30 

ℎ =
30 − 8

4
= 5.5 

 

 

𝑓(𝑥1) = 𝑓(𝑎 + ℎ) = 𝑓(8 + 5.5) = 𝑓(13.5) 

 

 

𝑓(𝑥2) = 𝑓(𝑥1 + ℎ) = 𝑓(13.5 + 5.5) = 𝑓(19) 
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𝑓(𝑥3) = 𝑓(𝑥2 + ℎ) = 𝑓(19 + 5.5) = 𝑓(24.5) 

 

 

𝑓(𝑏) = 𝑓(𝑥3 + ℎ) = 𝑓(24.5 + 5.5) = 𝑓(30) 

 

 

𝑥 =
ℎ

3
[𝑓(𝑎) + 4 ∑ 𝑓(𝑥𝑖) + 2 ∑ 𝑓(𝑥𝑖)

𝑛−2

𝑖=2
𝑖=𝑒𝑣𝑒𝑛

𝑛−1

𝑖=1
𝑖=𝑜𝑑𝑑

+ 𝑓(𝑏)] 

 

𝑥 =
5.5

3
[𝑓(8) + 4(𝑓(𝑥1) + 𝑓(𝑥3)) + 2(𝑓(𝑥2)) + 𝑓(30)] 

 

𝑥 =
5.5

3
[177.27 + 4(320.25 + 676.05) + 2(484.75) + 901.67] = 11061.64𝑚 

b) The exact value of the above integral is: 

 

 

 

 

So the true error is: 

𝐸 = 𝐸𝑥𝑎𝑐𝑡 𝑣𝑎𝑙𝑢𝑒 − 𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 = 11061.34 − 11061.64 = −0.30𝑚 
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c) The absolute relative true error is: 

𝜖 = |
𝑇𝑟𝑢𝑒 𝑒𝑟𝑟𝑜𝑟

𝐸𝑥𝑎𝑐𝑡 𝑣𝑎𝑙𝑢𝑒
| ∗ 100 = |

−0.30

11061.34
| ∗ 100 = 0.0027% 
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Differentiation 

The derivative of a function at 𝑥 is defined as 

 
   

x

xfxxf
xf

x 




 0
lim  

To be able to find a derivative numerically, one could make ∆𝑥 finite to give, 

 
   

x

xfxxf
xf




  

Knowing the value of 𝑥 at which you want to find the derivative of  xf , we 

choose a value of ∆𝑥 to find the value of  xf  .  To estimate the value of  xf 

, three such approximations are suggested as follows. 

 Forward Difference Approximation of the First Derivative 

From differential calculus, we know 

 
   

x

xfxxf
xf

x 




 0
lim  

For a finite∆𝑥, 

 
   

x

xfxxf
xf




  

The above is the forward divided difference approximation of the first 

derivative.  It is called forward because you are taking a point ahead of 𝑥.  To 

find the value of  xf   at 𝑥 = 𝑥𝑖, we may choose another point ∆𝑥 ahead as 

𝑥 = 𝑥𝑖+1.  This gives 

 
   

x

xfxf
xf ii

i



 1  

   

ii

ii

xx

xfxf










1

1  
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Figure (1) graphical representation of forward difference approximation 

Example 1: The velocity of a rocket is given by 

  300 ,8.9
21001014

1014
ln2000

4

4













 tt

t
t  

Where   is given in m/s and t  is given in seconds.  At s16t , 

a) Use the forward difference approximation of the first derivative of  tν  to 

calculate the acceleration.  Use a step size of s2t . 

b) Find the exact value of the acceleration of the rocket. 

c) Calculate the absolute relative true error for part (b). 

Sol: 

(a)  
   

t

tt
ta ii
i




   1  

 16it  

 2Δ t  

 ttt ii Δ1   

 216  
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                   =18 

  
   

2

1618
16

 
a  

  
 

 188.9
1821001014

1014
ln200018

4

4













  

          m/s 02.453  

  
 

 168.9
1621001014

1014
ln200016

4

4













  

          m/s 07.392  

Hence 

  
   

2

1618
16

 
a  

             
2

07.39202.453 
  

                      2m/s474.30  

(b) The exact value of  16a  can be calculated by differentiating 

   t
t

t 8.9
21001014

1014
ln2000

4

4













  

as 

     tν
dt

d
ta   

Knowing that 

   
t

t
dt

d 1
ln   and 

2

11

ttdt

d









 

   8.9
21001014

1014

1014

21001014
2000

4

4

4

4



























tdt

dt
ta   

         
 

  8.92100
21001014

1014
1

1014

21001014
2000

24

4

4

4


































t

t
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t

t

3200

4.294040




  

  
 

 163200

164.294040
16




a  

          2m/s674.29  

(c) The absolute relative true error is 

 100
Value True

Value eApproximatValue True



t  

         100
674.29

474.30674.29



  

                  %6967.2  

 Backward Difference Approximation of the First 

Derivative 

We know 

 
   

x

xfxxf
xf

x 




 0
lim  

For a finite ∆𝑥, 

 
   

x

xfxxf
xf




  

If  ∆𝑥 is chosen as a negative number, 

 
   

x

xfxxf
xf




  

   
x

xxfxf

Δ

Δ
  

This is a backward difference approximation as you are taking a point 

backward from 𝑥.  To find the value of  xf   at 𝑥 = 𝑥𝑖, we may choose another 

point x  behind as 𝑥 = 𝑥𝑖−1.  This gives 
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 
   

x

xfxf
xf ii

i



 1  

   

1

1










ii

ii

xx

xfxf
 

 
Figure (2) graphical representation of backward difference approximation 

Example 2: The velocity of a rocket is given by 

  300,8.9
21001014

1014
ln2000

4

4













 tt

t
t  

(a) Use the backward difference approximation of the first derivative of  tν  

to calculate the acceleration at s16t .  Use a step size of s 2t . 

(b) Find the absolute relative true error for part (a). 

Sol: 

a)  
   

t

tt
ta ii




 1

 

 16it  

 2Δ t  

 

   



Third year  Numerical Analysis using MATLAB   Mechatronics & Computer branch 

6 
 

 ttt ii Δ1    

       216  

                   = 14 

  
   

2

1416
16

 
a  

  
 

 168.9
1621001014

1014
ln200016

4

4













  

                     m/s07.392  

  
 

 148.9
1421001014

1014
ln200014

4

4













  

         m/s24.334  

 

  
   

2

1416
16

 
a  

           
2

24.33407.392 
  

          2m/s 915.28  

(b) The exact value of the acceleration at s16t  from Example 1 is 

   2m/s 674.2916 a  

The absolute relative true error for the answer in part (a) is 

 100
674.29

915.28674.29



t  

                  %5584.2  
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 Finite Difference Approximation of Higher Derivatives 

One can also use the Taylor series to approximate a higher order 

derivative.  For example, to approximate  xf  , the Taylor series is  

      
 

 
 

  







32

2 Δ2
!3

Δ2
!2

Δ2 x
xf

x
xf

xxfxfxf ii

iii                (3) 

Where 

xxx ii Δ22   

      
 

 
 

  
32

1
!3!2

x
xf

x
xf

xxfxfxf ii

iii 





     (4) 

Where 

xxx ii Δ1   

Subtracting 2 times Equation (4) from Equation (3) gives 

            
32

12 ΔΔ2 xxfxxfxfxfxf iiiii
   

 

 
     

 
   


  xxf

x

xfxfxf
xf i

iii
i Δ

Δ

2
2

12                                     

 
     

 
 xO

x

xfxfxf
xf iii

i 



 

2

12 2
             (5) 

Example 3: The velocity of a rocket is given by 

  300,8.9
21001014

1014
ln2000

4

4













 tt

t
t  

Use the forward difference approximation of the second derivative of  t  to 

calculate the jerk at s 16t .  Use a step size of s 2t . 
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Sol: 

 
     

 2
12 2

t

ttt
tj iii
i




  

 

 16it  

 2t  

 

18

216

1





 ttt ii

 

 

 

 

20

2216

22





 ttt ii

 

  
     

 22

1618220
16

 
j  

  
 

 208.9
2021001014

1014
ln200020

4

4













  

          m/s35.517  

  
 

 188.9
1821001014

1014
ln200018

4

4













  

          m/s02.453  

  
 

 168.9
1621001014

1014
ln200016

4

4













  

          m/s07.392  
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  
 

4

07.39202.453235.517
16


j  

  3m/s 84515.0  

 

The exact value of  16j  can be calculated by differentiating 

   t
t

t 8.9
21001014

1014
ln2000

4

4













  

Twice as 

     tν
dt

d
ta    

And  

     ta
dt

d
tj   

Knowing that 

   
t

t
dt

d 1
ln    

And  

 
2

11

ttdt

d









 

   8.9
21001014

1014

1014

21001014
2000

4

4

4

4



























tdt

dt
ta   

         
 

  8.92100
21001014

1014
1

1014

21001014
2000

24

4

4

4


































t

t
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t

t

3200

4.294040




  

Similarly it can be shown that 

     ta
dt

d
tj   

  
2)3200(

18000

t
  

 
 

3

2

m/s77909.0         

)]16(3200[

18000
16




j

 

The absolute relative true error is 

 100
77909.0

84515.077909.0



t  

      %4797.8  

The formula given by Equation (5) is a forward difference approximation of 

the second derivative and has an error. So we will get more accuracy from 

central difference approximation rule as follow: 

     
 

 
 

 
 

  ...
!4!3!2

432

1 








 x
xf

x
xf

x
xf

xxfxfxf iii
iii               (6) 

Where 

xxx ii Δ1   

     
 

 
 

 
 

  










432

1
!4!3!2

x
xf

x
xf

x
xf

xxfxfxf iii
iii               (7) 

Where 
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xxx ii Δ1   

Adding Equations (6) and (7), gives 

          
 

...
12

2

4
2

11 


 

x
xfxxfxfxfxf iiiii  

 
     

 
  

...
12

2
2

2

11 






  xxf

x

xfxfxf
xf iiii

i
 

     
 

 2
2

11 2
xO

x

xfxfxf iii 



   

Example 4: The velocity of a rocket is given by 

  300 ,8.9
21001014

1014
ln2000

4

4













 tt

t
t , 

(a) Use the central difference approximation of the second derivative of  tν  

to calculate the jerk at s 16t .  Use a step size of s 2t . 

Sol: 

The second derivative of velocity with respect to time is called jerk.  The 

second order approximation of jerk then is 

  
     

 2
11 2

t

ttt
tj iii

i



  

 

 16it  

 2t  

 

18

216

1





 ttt ii
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14

216

2





 ttt ii

 

  
     

 22

1416218
16

 
j  

  
 

 188.9
1821001014

1014
ln200018

4

4













  

          m/s02.453  

  
 

 168.9
1621001014

1014
ln200016

4

4













  

          m/s07.392  

  
 

 148.9
1421001014

1014
ln200014

4

4













  

          m/s24.334  

  
     

 22

1416218
16

 
j  

          
 

4

24.33407.392202.453 
  

          3m/s 77969.0  

The absolute relative true error is 

 100
77908.0

77969.077908.0



t  

      %077992.0  
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Interpolation 

 Many times, data is given only at discrete points such as  ,, 00 yx   11, yx

, ......,  11,  nn yx ,  nn yx , .  So, how then does one find the value of 𝑦 at any other 

value of 𝑥. Well, a continuous function  xf  may be used to represent the 

1n  data values with  xf  passing through the 1n  points (Figure 1).  Then 

one can find the value of y at any other value of x.  This is called interpolation. 

If 𝑥 falls outside the range of 𝑥 for which the data is given, it is no longer 

interpolation but instead is called extrapolation. A polynomial is a common 

choice for an interpolating function because polynomials are easy to  

(A) evaluate, 

(B) differentiate, and 

(C) integrate, relative to other choices such as a trigonometric and 

exponential series.  

 Polynomial interpolation involves finding a polynomial of order 𝑛 that 

passes through the 𝑛 + 1 data points.  One of the methods used to find this 

polynomial is called the Lagrangian method of interpolation.  Other methods 

include Newton’s divided difference polynomial method and the direct 

method.  
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Figure (1)   Interpolation of discrete data. 

 

The Lagrangian interpolating polynomial is given by: 





n

i

iin xfxLxf
0

)()()(  

Where 𝑛 in )(xf n  stands for the thn  order polynomial that approximates the 

function )(xfy   given at 1n  data points as        nnnn yxyxyxyx ,,,,......,,,, 111100  , 

and: 



 




n

ij
j ji

j

i
xx

xx
xL

0

)(  

𝐿𝑖(𝑥) is a weighting function that includes a product of 𝑛 − 1 terms with terms 

of 𝑗 = 𝑖 omitted. 
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Example 1: The upward velocity of a rocket is given as a function of time in 

Table below. 

t  (s) )(tv  (m/s) 

0 0 

10 227.04 

15 362.78 

20 517.35 

22.5 602.97 

30 901.67 

 

 

 

 

 

 

Figure (2)   Graph of velocity vs. time data for the rocket example 

Determine the value of the velocity at 16t  seconds using a first order 

Lagrange polynomial.  

Sol: 

For first order polynomial interpolation (also called linear interpolation), the 

velocity is given by: 





1

0

)()()(
i

ii tvtLtv  

)()()()( 1100 tvtLtvtL   
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Figure (3)   linear interpolation. 

Since we want to find the velocity at 𝑡 = 16, and we are using a first order 

polynomial, we need to choose the two data points that are closest to 𝑡 = 16 

that also bracket 𝑡 = 16 to evaluate it.  The two points are 𝑡0 = 15 and 𝑡1 =

20. Then: 

  78.362  ,15 00  tvt  

  35.517  ,20 11  tvt  



 




1

0
0 0

0 )(

j
j j

j

tt

tt
tL  

10

1

tt

tt




  



 




1

1
0 1

1 )(

j
j j

j

tt

tt
tL  

01

0

tt

tt




  

Hence 

)()()( 1

01

0

0

10

1 tv
tt

tt
tv

tt

tt
tv









  
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2015    ),35.517(
1520

15
)78.362(

2015

20










 t

tt
 

)35.517(
1520

1516
)78.362(

2015

2016
)16(









v  

)35.517(2.0)78.362(8.0   

m/s 69.393  

We can see that 8.0)(0 tL  and 2.0)(1 tL  are like weightages given to the 

velocities at 𝑡 = 15 and 𝑡 = 20 to calculate the velocity at 𝑡 = 16. 

Example 2:  The upward velocity of a rocket is given as a function of time in 

Table below. 

t  (s) )(tv  (m/s) 

0 0 

10 227.04 

15 362.78 

20 517.35 

22.5 602.97 

30 901.67 

 

a) Determine the value of the velocity at 𝑡 = 16 seconds with second order 

polynomial interpolation using Lagrangian polynomial interpolation.   

b) Find the absolute relative approximate error for the second order 

polynomial approximation. 

Sol: 

a) For second order polynomial interpolation (also called quadratic 

interpolation), the velocity is given by: 





2

0

)()()(
i

ii tvtLtv  
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)()()()()()( 221100 tvtLtvtLtvtL   

Since we want to find the velocity at 𝑡 = 16, and we are using a second order 

polynomial, we need to choose the three data points that are closest to 𝑡 =

16 that also bracket 𝑡 = 16 to evaluate it.  The three points are 𝑡0 = 10, 𝑡1 =

15, 𝑎𝑛𝑑 𝑡2 = 20. 

Then 

 

  78.362,15 11  tvt  

  35.517,20 22  tvt  

Gives 



 




2

0
0 0

0 )(

j
j j

j

tt

tt
tL  































20

2

10

1

tt

tt

tt

tt
 



 




2

1
0 1

1 )(

j
j j

j

tt

tt
tL  





























21

2

01

0

tt

tt

tt

tt
 



 




2

2
0 2

2 )(

j
j j

j

tt

tt
tL  





























12

1

02

0

tt

tt

tt

tt
 

  04.227,10 00  tvt
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Hence 

202

12

1

02

0
1

21

2

01

0
0

20

2

10

1   ),()()()( ttttv
tt

tt

tt

tt
tv

tt

tt

tt

tt
tv

tt

tt

tt

tt
tv 


















































































  

)35.517(
)1520)(1020(

)1516)(1016(

)78.362(
)2015)(1015(

)2016)(1016(
)04.227(

)2010)(1510(

)2016)(1516(
)16(














v

 

)35.517)(12.0()78.362)(96.0()04.227)(08.0(   

m/s 19.392  

b) The absolute relative approximate error a  for the second order 

polynomial is calculated by considering the result of the first order 

polynomial (Example 1) as the previous approximation. 

100
19.392

69.39319.392



a  

%38410.0  
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Solving Ordinary Differential Equation 

Runge-Kutta method 

 The Runge-Kutta method is a numerical technique used to solve an ordinary 

differential equation of the form. 

    00,, yyyxf
dx

dy
  

Runge-Kutta 2nd order method 

Euler’s method is given by 

 hyxfyy iiii ,1                                          (1) 

Where 

 00 x  

 )( 00 xyy   

 ii xxh  1  

To understand the Runge-Kutta 2nd order method, we need to derive Euler’s method 

from the Taylor series. 

       ...
!3

1

!2

1 3

1

,

3

3
2

1

,

2

2

1

,

1   ii

yx

ii

yx

ii

yx

ii xx
dx

yd
xx

dx

yd
xx

dx

dy
yy

iiiiii

 

          ...),(''
!3

1
),('

!2

1
),(

3

1

2

11   iiiiiiiiiiiii xxyxfxxyxfxxyxfy  (2) 

As you can see the first two terms of the Taylor series 

  hyxfyy iiii ,1   

are Euler’s method and hence can be considered to be the Runge-Kutta 1st order 

method. 

The true error in the approximation is given by 

 
   

...
!3

,

!2

, 32 





 h
yxf

h
yxf

E iiii
t                                                                           (3) 
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So what would a 2nd order method formula look like.  It would include one more 

term of the Taylor series as follows. 

    2

1 ,
!2

1
, hyxfhyxfyy iiiiii



                                        (4) 

Let us take a generic example of a first order ordinary differential equation 

 
  50,32   yye

dx

dy x

  

   yeyxf x 3, 2  

 

Now since y is a function of x, 

 
 

   
dx

dy

y

yxf

x

yxf
yxf











,,
,

                                                                                 (5) 

  
     yeye

y
ye

x

xxx 333 222 








 

 

   yee xx 3)3(2 22  

 

  ye x 95 2  

 

The 2nd order formula for the above example would be 

 
    2

1 ,
!2

1
, hyxfhyxfyy iiiiii



 

 
    222

95
!2

1
3 hyehyey i

x

i

x

i
ii 



 

However, we already see the difficulty of having to find  yxf ,  in the above method.  

What Runge and Kutta did was write the 2nd order method as 

  hkakayy ii 22111                                         (6) 

where 

  ii yxfk ,1   

  hkqyhpxfk ii 11112 ,                                 (7) 

This form allows one to take advantage of the 2nd order method without having to 

calculate  yxf , . 



Third year  Numerical Analysis using MATLAB   Mechatronics & Computer branch 

3 
 

 So how do we find the unknowns 1a , 2a , 1p  and 11q . Without proof (see 

Appendix for proof), equating Equation (4) and (6), gives three equations. 

 121  aa  

 2

1
12 pa

 

 2

1
112 qa

 

Since we have 3 equations and 4 unknowns, we can assume the value of one of the 

unknowns.  The other three will then be determined from the three equations.  

Generally the value of 2a  is chosen to evaluate the other three constants.  The three 

values generally used for 2a  are 2

1

, 1 and 3

2

, and are known as Heun’s Method, the 

midpoint method and Ralston’s method, respectively. 

Heun’s Method 

Here 2

1
2 a

 is chosen, giving 

 2

1
1 a

 

 11 p  

 111 q  

Resulting in 

 
hkkyy ii 







 211

2

1

2

1

                                                                                   (8) 

Where 

  ii yxfk ,1                                                                                               (9a) 

  hkyhxfk ii 12 ,                                                                                (9b) 
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Example 1:  A ball at 1200K is allowed to cool down in air at an ambient temperature 

of 300K.  Assuming heat is lost only due to radiation, the differential equation for 

the temperature of the ball is given by  

)1081( 102067.2 8412-  


dt

d

 

Where   is in K and t  in seconds.  Find the temperature at 480t  seconds using 

Runge-Kutta 2nd order method.  Assume a step size of  240h  seconds. 

Sol: 

 8412 1081102067.2   


dt

d
 

   8412 1081102067.2,   tf  

Per Heun’s method given by Equations (8) and (9) 

 
hkkii 







 211

2

1

2

1


 

  iitfk ,1   

  hkhtfk ii 12 ,    

 1200)0(,0,0 00  ti  

  otfk ,01   

                  1200,0f  

       8412 10811200102067.2  

 

      5579.4  

  hkhtfk 1002 ,    

        2405579.41200,2400  f  

       09.106,240f  

                  8412 108109.106102067.2      
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                 017595.0  

 hkk 







 2101

2

1

2

1
  

          240017595.0
2

1
5579.4

2

1
1200 








  

       2402702.21200   

      16.655 K 

 K16.655,2402400,1 101  htti  

  111 ,tfk   

       16.655,240f  

       8412 108116.655102067.2  

 

      38869.0  

  hkhtfk 1112 ,    

       24038869.016.655,240240  f  

      87.561,480f  

      8412 108187.561102067.2  

 

                20206.0  

 
hkk 







 2112

2

1

2

1


 

      
    24020206.0

2

1
38869.0

2

1
16.655 










 

       24029538.016.655   

                 27.584 K 

   27.5844802  K 
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Example 2:  A ball at 1200 K is allowed to cool down in air at an ambient temperature 

of 300 K.  Assuming heat is lost only due to radiation, the differential equation for 

the temperature of the ball is given by  

    K12000,1081102067.2 8412   


dt

d

 

where   is in K and t  in seconds.  Find the temperature at 480t  seconds using 

Runge-Kutta 4th order method.  Assume a step size of  240h  seconds. 

Sol: 

 8412 1081102067.2   


dt

d
 

   8412 1081102067.2,   tf  

  hkkkkii 43211 22
6

1
   

 For 0i , 00 t , K12000   

  001 ,tfk   

  1200,0f  

  8412 10811200102067.2    

 5579.4  

 







 hkhtfk 1002

2

1
,

2

1
  

     







 2405579.4

2

1
1200,240

2

1
0f  

  05.653,120f  

  8412 108105.653102067.2    

 38347.0  

 







 hkhtfk 2003

2

1
,

2

1
  



Third year  Numerical Analysis using MATLAB   Mechatronics & Computer branch 

7 
 

     







 24038347.0

2

1
1200,240

2

1
0f  

  0.1154,120f  

  8412 10810.1154102067.2    

 8954.3  

  hkhtfk 3004 ,    

   240894.31200,2400  f  

  10.265,240f  

  8412 108110.265102067.2    

 0069750.0  

 hkkkk )22(
6

1
432101   

       240069750.08954.3238347.025579.4
6

1
1200   

   2401848.21200   

 K65.675  

1  is the approximate temperature at 

 1tt   

   ht  0  

              2400  

              240  

  2401    

                K65.675  

For K65.675,240,1 11  ti  

  111 ,tfk   

            65.675,240f  

            8412 108165.675102067.2    



Third year  Numerical Analysis using MATLAB   Mechatronics & Computer branch 

8 
 

           44199.0  

 







 hkhtfk 1112

2

1
,

2

1
  

 
    








 24044199.0

2

1
65.675,240

2

1
240f

 

  61.622,360f  

  8412 108161.622102067.2  

 

 31372.0  

 







 hkhtfk 2113

2

1
,

2

1
  

     







 24031372.0

2

1
65.675,240

2

1
240f  

  00.638,360f  

  8412 108100.638102067.2    

 34775.0  

  hkhtfk 3114 ,    

             24034775.065.675,240240  f  

            19.592,480f  

            8412 108119.592102067.2    

           25351.0  

 hkkkk )22(
6

1
432112   

        24025351.034775.0231372.0244199.0
6

1
65.675   

   2400184.2
6

1
65.675   

 K91.594  
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2  is the approximate temperature at  

 2tt   

   ht  1  

              240240  

              480  

 

  4802    

 K91.594  

 

 

 


