مواد الامتحان التنافسي لدراسة الدكتوراه في تخصص هندسة السيطرة

للعام الدراسي 2021-2021

تفاصيل المفردات	اسم المادة	ت
 Ordinary differential equations: a) Solution to linear ordinary differential equation. b) Series solution to ODE (power series solution, Legendre polynomial, Frobenius solution and Bessel's function). c)Existence and Uniqueness. Complex Analysis: a) Complex Analysis: a) Complex functions. c) Complex integration (Line integral using the representation of curve, Cauchy's integral theorem, Cauchy's integral formula). d) Infinite series in the complex plane (Convergence and divergence series, Power series, Laurent's expansion). e) The theory of residues (Residue integration method, Evaluation of real definite integral). J-Linear Algebra and Functional Analysis: a) Linear Systems of Equations (Gaussian Elimination). b) Matrix Algebra (Matrix Addition and Multiplication, Special Matrices and Transposes, Matrix Inverses, Basic Properties of Determinants). c) Vector Spaces and Subspaces (definition of vector spaces and linear transformation, Subspaces, Linear Combinations, Subspaces Associated with Matrices and Operators, Bases and Dimension). d) The Eigenvalue Problem(Definitions and Basic Properties, Similarity and Diagonalization, Orthogonal Diagonalization, the Singular Value Decomposition) e) Functional Analysis (Normed Linear Spaces and Banach Spaces,Inner Product and Hilbert Spaces) References: a) Ernear Systems S. Applied Linear Algebra and Matrix Analysis.Springer Science + Business Media, LLC, 2007. 	Mathematics	1
 1- Feedback Analysis and Design a) Sensitivity Functions b) Internal Stability c) Performance Issues of Feedback Design d) Tradeoffs in Feedback Design e) Loop Shaping 2- Model Uncertainty 	Robust Control	2

 a) Additive and Multiplicative Uncertainty b) Uncertainty Weighting Expection 		
b) Uncertainty weighting Function		
c) Robustness Analysis		
d) Robust Stability Analysi		
3-Robust Feedback Design		
a) Mixed Sensitivity		
b) Lower Fractional Transformation (LFT) and Upper		
Fractional Transformation (UTF)		
c) H2 and H-infinity Optimal Control		
References:		
1) Essentials of Robust Control		
Author: Zhou and Doyle		
Publisher: Prentice-Hall, 1988		
2) Robust Control Design, An Optimal Control Approach		
Author: Feng Lin		
Publisher: Wiley, 2007		
1- Knowledge Based Systems:		
a) Knowledge-Based Systems.		
b) Expert System.		
c) Rule-Based Systems		
d) Rete algorithm. Conflict resolution. Forward-Chaining		
Backward-Chaining		
2. Artificial Neural Networks		
a) Feed forward Neural Network Feedback Neural Network		
Neural Processing Learning and adaptation Learning rules		
Single Lever and Multi Lever Dercentron classifiers		
b) Nonnersmetrie training concent Multilever Food Forward		
b) Nonparametric training concept, Multilayer reed-rorward Networks		
c) Error back-propagation training and learning factors		
d) Single Laver Feedback Networks		
a) Spiling Neural Network		
2 Fuzzy Logic Control	Intelligent	
S-Fuzzy Logic Control:	Control	3
a) Foundations of Fuzzy Logic: Sets, Types of Memberships,	Control	5
Logical operations, If-Then Rules.	Systems	
b) Fuzzy Inference Systems.		
c) Fuzzy Logic Control (Continuous and discrete).		
d) Type-2 FLC and Interval Type-2 FLC.		
e) ANFIS.		
4- Genetic Algorithm (Binary and Continuous) :		
a) Components of a Binary GA, Selecting the Variables and		
Cost Function		
b) Variables Coding and Decoding		
c) Natural Selection methods (mating).		
d) Types of mating (Cross-Over).		
e) Mutations		
f) Next generation.		
g) Convergence.		
Poforonoos		
Neter ences:		

 1)"Introduction to Artificial Neural Systems" By: Jacek M. Zurada, 1999. 2) "Fuzzy Control" By: Kevin M. Passino and Stephen Yurkovich, 1998 3) Practical Genetic Algorithms" By: Randy L. Haupt and Sue Ellen Haupt, 2004 		
 1-Calculus of Variations and Optimal Control a) Optimum of a Function and a Functional b) The Basic Variational Problem c) The Second Variation d) Extrema of Functions with Conditions e) Extrema of Functionals with Conditions f) Variational Approach to Optimal Control Systems i-Terminal Cost Problem ii- Different Types of Systems iii- Sufficient Condition 2- Linear Quadratic Optimal Control a) Problem Formulation b) Finite-Time Linear Quadratic Regulator i-Symmetric Property of the Riccati Coefficient Matrix ii-Optimal Control iii- Optimal Performance Index iv-Finite-Time Linear Quadratic Regulator c) Infinite-Time LQR System II i- Meaningful Interpretation of Riccati Coefficient iii- Analytical Solution of the Algebraic Riccati Equation. iii- Infinite-Interval Regulator System: iv- Stability Issues of Time-Invariant Regulator v- Equivalence of Open-Loop and Closed-Loop Optimal Controls 	Optimal Control	4
 3- Constrained Optimal Control Systems a) Constrained Optimal Control i- Time-Optimal Control of LTI System ii- Problem Formulation and Statement iii- Solution of the TOC System iv- Structure of Time-Optimal Control System b) TOC of a Double Integral System i- Problem Formulation and Statement. ii- Problem Solution. iii- Engineering Implementation of Control Law. References: 		
LLC, 2003.		
 1- Second order Systems a) Qualitative Behavior of Linear Systems. b) Multiple Equilibria. 	Nonlinear Control System	5

c) Qualitative Behavior Near Equilibrium Points.		
d) Limit Cycles.		
2- Lyapunov Stability		
a) Basic Theorems of Lyapunov's Method for Autonomous		
systems.		
b) The Invariance Principle.		
c) Stability of Perturbed Systems		
1- Vanishing Perturbation		
2 Nonvanishing Porturbation		
2- Nonvanishing Perturbation		
3- Feedback Control		
a) Control Problems		
b) Stabilization via Linearization		
c) Integral Control		
4- Feedback Linearization		
a) Feedback Linearizable System		
h) Input-Output Linearization		
b) Input-Output Enteanzation		
5 New Kinsen Design Trade		
5- Nonlinear Design Tools		
a) Lyapunov Redesign		
b) Backstepping		
References:		
1) H. K. Khalil, Nonlinear Systems, Prentice Hall, Upper Saddle		
River. New Jersey. 2002.		
2) I I E Slotine and W I i Applied Nonlinear		
Control Prontice Hell Englewood Cliffs NL 1001		
1- Analysis of Control Systems in State Space:		
(The State Space Approach, Diagonalization, Cayley–Hamilton		
theorem, State Transition Matrix, Controllability,		
Observability, Solution of linear time invariant state equations,		
Solution of linear time varying state equations).		
2- Realization and Stability: (Stability definitions, internal		
stability BIBO stability)		
subility, Dibo subility).		
2 Dala Diagoment Design using Full State Foodback	Advanced	
5- Pole-Placement Design using Full State Feeuback:	Control	6
(Pole-Placement Regulator Design for single input plants,	Control	U
Pole-Placement Regulator design for Plant with Noise, Pole-	Theory	
Placement Design of Tracking systems)		
4- State observers:		
(Full order state Observers, Reduced Order State Observer,		
Ackerman's formula)		
·····		
5- Kalman Filter		
(Filtering of Pandom Signals White Noise State Estimation)		
(1 menne of Kandom Signais, while 1901se, State Estimation)		

References:		
Burns Ronald S. "Advanced Control Engineering", First		
Edition 2001.		
1-Mathematical Modeling of Dynamic Systems		
a) Transfer Function and Impulse-Response		
b) Block Diagrams		
c) Mechanical Systems		
d) Electrical Systems		
e) Liquid-Level Systems		
f) Thermal Systems		
2-Transient and Steady State Response Analysis		
a) First-Order Systems		
b) Second-Order Systems		
c)Transient-Response Analysis		
3-Basic Control Actions and Response of Control System.		
a) Basic Control Actions		
b) Effects of Integral and Derivative Control Actions on		
System		
Performance		
c) Higher-Order Systems		
d) Routh's Stability Criterion		
f) Steady-State Errors in Unity-Feedback Control Systems		
4-Root Locus Analysis	Classical	_
a) Root-Locus Plots	Control	7
b) Summary of General Rules for Constructing Root Loci	Theory	
c) Root-Locus Plots problems and Solutions	-	
d) Root-Locus Analysis of Control Systems		
e) Root Loci for Systems with Transport Lag		
5-Control Systems Design by the Root-Locus Method		
a) Preliminary Design Considerations		
b) Lead Compensation		
c) Lag Compensation		
d) Lag-Lead Compensation		
6-Frequency Response Analysis		
a) Bode Diagrams		
b) Plotting Bode Diagrams		
c) Polar Plots		
d) Drawing Nyquist Plots		
e) Log-Magnitude versus Phase Plots		
f)Nyquist Stability Criterion		
g) Stability Analysis		
h) Experimental Determination of Transfer Functions		
7-Control Systems Design by Frequency Response.		
a) Lead Compensation		

b) Lag Compensation		
c) Lag-Lead Compensation		
<u>References:</u> Katsuhiko Ogata, Modern Control Engineering , 3rd Edition		
1997.		
1- State Feedback Direct Model Reference Adaptive Control (Direct MRAC Design for Scalar Systems, Dynamic Inversion MRAC Design for Scalar Systems, MRAC Design for Multi- Input Multi-Output Systems)		
2- Robust Adaptive Control		
(MRAC Design in the Presence of Bounded Disturbances, MRAC Design Modifications for Robustness (Dead-Zone Modification, σ -Modification, e -Modification)	Adaptive	8
3- Adaptive Backstepping Control	Control	
(Model transformation, Design procedure)		
References:		
1) Eugene Lavretsky, Kevin A. Wise, "Robust and Adaptiv		
Control," Springer-Verlag London 2013.		
2) Miroslav Kristic, Ioannis Kanellakopoulos and		
Petar Kokotavic, "Nonlinear and Adaptive Control Design "New York Wiley Internsional 1005		
Design, New York: Wiley-Interscience, 1995.		