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What Is a System?

V

e Set of elements
W(t) e Set of relations
l e Functioning together
u(t) » System »y(1)

¥ A system™: is an object in which variables of different
kinds interact and produce observable signals: Ouzputs.

* Its external signals are either Inputs or Disturbances.

*Taken from your System Identification course lecture 1



Linear and Nonlinear

Linea/r’fime—lnvcuridnT Systems
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What is a Nownlinear Sjs%em;??

A nonlinear system is a system in which the
change of the output is not proportional to the

change of the input.

ONorlinear problems are of inkerest because wmost
P

3s&ems are inheran&i.j nonlinear it nature.,

OFor Linear systems, the conktrolled response is
much more predictable. But when you close a
control Lloop around a honlinear system,

uhpredic&abi.e and chaotic behavior is exped:ecl.
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Nonlinear Systems [1]

The subject of nonlinear control deals with the analysis and the design
of nonlinear control systems i.e., of control systems containing at least

one nonlinear component.

In the analysis, a nonlinear closed-loop system is assumed to have
en designed, and we wish to determine the characteristics of the

system's behavior.

A system is nonlinear if the principle of Superposition does not apply.




What is a Nonlinear System??

A system is nonlinear if the principle of Superposition does not apply.

(Superposition is a Necessary and sufficient Condition for linearity).

A system is NONLINEAR if the response to 2 or more |/Ps cannot be

calculated by freating each I/P separately and adding the results.

uperposition theorem: A system is linear if it is complied with the

following mathematical properties:
1. Additivity

2. Homogeneity



Properties of Superposition [2]

1. Additivity: a signal in a linear system can be broken and processed

individually and then it could be united again

x,(t) | Linear | y.(t x2(t) | Linear | y,(t)

Then x4(t) + x,(¢) ‘ Linear | yi(t)+ yz(tL
System

Figure 1: Additivity property of superposition theorem

/




Properties of Superposition [2]

2. Homogeneity: The change in the input's signal amplitude results in a

corresponding change in the output signal amplitude.

|F x,(t) . y,(tz Then kx‘(t)- ky;(t)

Figure 2: Homogeneity property of superposition theorem




Examples [2]

Ex.1:  Yy(t) = x(an(t))
X (1) = /55— y.(t) = X (Sn(D)
(1) > 95> ¥,() = x,(sn()
G0+ v, () = X (SNO)+ X SNW) (D)
X ()4 %(1) = 55— YOO+ 6 0) = xEND) +,END) (2
=)

ky(t) = kx(sin(t)) .3

y(kx(t)) =kx(sin(t))  ..(4)
(3) = (4) LOA and LOH are sgtisfied then the system is LINEAR



Examples [2]

X2 y(t) =X (1)
LOA yi(t) = zi(t)
Ya(t) = z5(t)
yi(t) + ya(t) = 21 (¢) + 25(t).....(1)
y(z1(t) + 22(t)) = (21(t) + 22(1))>.....(2)

= (1) #(2)
No need to verify for LOH (LOA and LOH must both be TRUE)

Then the system is NONLINEAR
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Examples [2]
Ex.3  y(t)=2t+ x(t)
LOA X (t) = sys— y,(t) =2t + x,(t)
X,(t) = sys— y,(t) =2t + X (t)
y, () +y, (1) =4t+x (t) +x,(t) ...(D)

X (t)+X,(t) = sys— y(t) =2t + X (t) + X, (t) ...(2)
(D= (2)
LOA is violated then system is NONLINEAR

HomeWork: check Linearity of the following systems:
Dy(t) =sint x(t) 2)y(t) = ex(t)

3)y(t) = 3logt—sint x(t*) Ay(t) = x(t+2) + x(t - 1)



Nonlinear Ordinary Differential Equations

t,y, y’,..., y(n)) is LINEAR ODE if it can be written as follows

a,()y"+a )y +..+a (t)y=bt) ..*)

where a,(t),...a (t),b(t) and are arbitrary differentiable functions that do not need to be

.Y are the successive derivatives of Y(t)..

linear, y*",

of the dependent variable y(t) and its derivatives are to the first power.

2 /All of Y(t)and its derivatives DO NOT appear in a nonlinear function like
y2(t),y Y(t),siny(t)...etc

All Coefficients of Y(t)and its derivatives are PURE functions of the independent variable t

12



Nonlinear Ordinary Differential Equations

Is the following ODE linear?

1. Y -5y=ty’=25 y= f(t) 2. (3{) ~2t2=0

Sol. 1) Rearrange first equation to see if it matches ODE form in (**)

y”(t) - ty’(t) - Sty(t) = =25

s the first equation is LINEAR.

2) The first term of the second equation is the square of the
differential coefficient, hence it is NONLINEAR

(dyj _2t2=0
dt .



Nonlinear ODE System
H.W: Check the following ODE for Linearity

1. V(O +3y)y(t)+ y(t)=¢€ 2. Y(X)+ey(x)+ y(x) =sinx
3. «/ d);(x) + y(X) = 7cosX 4. y(t)y(t) =logx

14



System of ODE

R
v, | (
Y )\

s\stem is nonlinear.

f(Y)

fm(i,v) )

number of coupled differential equations form a system of equations.

The focus will be here on the system of finite number of first order ODE:

,
yl\

L

If f.(t,Y),....f_(1,Y) have one or more nonlinear terms, then the

15



System of Linear ODE

plel: The following system is nonlinear since it has two nonlinear

terms:

16



Nonlinear Systems Examples

Frictionless PENDULUM Equation

7

From a force balance we obtain:

d°e
me sin(8)+m L +~ =0
g sin(0) + e

dae g
a - LO
let y(t)=0(t)
d’ .
—g/ =—-23ny
dt It is a Nonlinear System

17




Nonlinear Systems Examples

Minimal model of glucose kinetics of Type 1 Diabetes: (BERGMAN

minimal model)

G(r) = —p1.(G(t) — Gb) — X (1).G(1) s e
X(t) = —p2.X(t) + p3.(I(t) — Iy) (G""”S’“{m-ps) iG>
4. (I(z) —1Ip)

I(f) p (G(t) ps) "t —pe

ore Glucose and interstitial and plasma insulin respectively.

Gb,lb, o I—l, 5 are constants.

18



Nonlinear Systems Behavior

1 of [1]: A simplified model of the motion of an underwater vehicle

can be written

V+ |vlv=U
= ol
2 &
a o —
s % 08
>
06
0.4
https://www.ecagroup.com/en/solutions/a9-e-auv-autonomous-underwater-vehicle 0 2
0.0 1 1 A J
0 5 Lo L5 20
lime(sec)

Pmeaec) 19 (Figure 1.1)


https://www.ecagroup.com/en/solutions/a9-e-auv-autonomous-underwater-vehicle
https://www.ecagroup.com/en/solutions/a9-e-auv-autonomous-underwater-vehicle

/ Apptjihs u=10 on the s:jsﬁem: V + ‘V‘V =u

thrust u
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Example 1.1 of [1]..ctd
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Example 1.1 of [1]..ctd
v+ |viv=u (1)

'/The settling speed (v,) in response to the first step is not 10 _times that obtained in response to the

first unit step in the first experiment, as it would be in a linear system.

kThis can be understood intuitively, by setting steady state in equation (1):

u=1 = 0+|v|lv,=1 = v, =1
u=10 = 0+ |v,|v,=10 = v,=4/10 % 3.2

® Qarefully understanding and effectively controlling this nonlinear behavior is particularly
important if the vehicle is to move in a large dynamic range and change speeds continually, as

is tWical of industrial remotely-operated underw%’rer vehicles.




NONLINEAR Systems [1]

-Physical systems are inherently nonlinear. Thus, all control systems

are nonlinear to a certain extent.

-However, if the operating range of a control system is small, and if

the‘involved nonlinearities are smooth, then the control system may

e reasonably approximated by a linearized system. Its dynamics is

described by a set of linear differential equations.

Ex. Pendulum equation, if the range of the movement is small (small
. . 20 _ 20 _
angle Approximation): fjf = lg sind if 00 — sind =0 = fgf = lgﬁ
4 4

22




WHY Nonlinear Control? [1]

1. Improvement of existing control systems:

MLinear conbtrol wethods rely on the key assumption of small

range operation for the Linear model to be valid.

en the required operation range is large, a linear controller is
likely to perform very poorly or to be unstable, because the

nonlinearities in the system cannot be properly compensated for.

#Nonlinear controllers, on the other hand, wmay handle the

nonlinearities in large range operation directly,
23



WHY Nonlinear Conirol? [1]

1. Improvement of existing control systems (Robot Example):

o This point is easily demonstrated in robot motion conkrol probtems.

¢ Whein

Linear controller is used to control robot motion, it neqlects

the' nonlinear forces associated with the motion of the robob Links.

he controller's accuracy thus quickly degrades as the speed of
motion increases, because wmany of the dynamic forces involved,
such as Coriolis and centripetal forces, vary as the square of the

speeci‘
24



1. 2DOF Robot examplel[3]:

= M(6)0 + ¢(6,8) + g(6),

[ myL? +mg(L? +2L1Lycosfy + L2) mo(LiLycosfy + L2)
my (Ll LQ COS 02 -+ L%) mng 4

[ —m2L1L2 sin 92 (20102 i 9%)
mo L1 Lo6% sin 6, :

mogLo cos(61 + 62)

[ (my +my)Lygcosf; + magLy cos(6; + 6) ]

e

\ /

where M () is the symmetric positive-definite mass matrix, ¢(6, 6?) is the vector
containing the Coriolis and centripetal torques, and g(6) is the vector containing
the gravitational torques. These reveal that the equations of motion are linear
in é, quadratic in é, and trigonometric in 6.

Quadratic terms containing 9; are called centripetal terms, and quadratic
terms containing 0 i # j, are called (12510113 terms.




WHY Nonlinear Control? [1]

1. Improvement of existing control systems (Robot example):

® Therefore, in order to achieve a pre-specified accuracy in robot tasks
such as pick-and-place, arc welding and laser cultting, the speed of

robgt motion, and thus productivity, has to be kept Low.

n the other hand, a conceptually simple nonlinear controller,
commonly called computed torque controller, can fu,u.vj compensate
the nownlinear forces in the robolt motion and lead ko high accuracy

control for a very large range of robot speeds and a large workspace.
26



WHY Nonlinear Control?
A single-joint robot rotating under gravity [3]

Consider a single motor attached to a single link, as shown. Let 7 be the motor's torque and 6 be

he /angle of the link. The dynamics with the friction torque can be written as

7= MO+ mgrcosf+bh, b>0.

N —  —
h(6,0)

where M is the scalar inertia of the link about the axis of rotation, m is the
mass of the link, r is the distance from the axis to the center of mass of the link.
and g > 0 is the gravitational acceleration.

h contains all terms that depend only on the state, not the acceleration.

27



A single-joint robot rotating under gravity[3] pp. 429-430

Let’s combine PID control with a model of the robot dynamics {M,h} to
achieve the error dynamics

0,+K,0,+K 6, + Kijee(t) dt=0

b=0,+K,0,+K0,+K [6,0)d (%)

suppose we have a model of the robot arm as follows
= M6+h(6,0) (**)

substitute (*) in eq. (**) yields:

=DM (éd + Kpbe + K; [ Oe(t)dt + Kdée) W iz(é’, 9)
28




: Robotic Arm with computed torque control [3] pp. 429-433

conceptually simple nonlinear controller, commonly called computed torque controller, can fully
compensate the nonlinear forces in the robot motion and lead to control for a very large range of robot

speeds and a large workspace.

v

T = M6 + h(6.0)

64”0“ Robot arm \

{ linear error dynamics }

T = }\,TI (od + K,,Oe + K; /0¢(t)dt I Kdée) ¥ il(o 0)

A Computed Torque Contirol

0,+K,0,+K 6, + Kijee(t)dt:O




WHY Nonlinear Control? [1]

2. Analysis of hard nonlinearities:

-In control systems there are many nonlinearities whose discontinuous
nature does not allow linear approximation. These so-called "hard
nonlinearities" include Coulomb friction, satfuration, dead-zones,

backlash, and hysteresis, and are often found in control engineering.

-Nohlinear analysis techniqgues must be developed to predict @

stem’s performance in the presence of these inherent nonlinearifies.

-Because such nonlinearities frequently cause undesirable behavior

like Instabilities, their effects must be predicted and properly

compensated for.
30



WHY Nonlinear Control? [1]

& There may be other reasons to use nonlinear control techniques, such as cost
and performance optimality. As for performance optimality, we can cite bang-
bang type controllers, which can produce fast response, but are inherently

nonlinear.

e past, the application of nonlinear conirol methods had been limited by

computational difficully associated with nonlinear control design and

@ Inrecent years, however, advances in computer technology have greatly
relieved this problem.

ore details can be found in Section 1.1 in [1].
31



Types of Nonlinearities [1]

- Nonlinearities can be classified as inherent (natural) and intentional (artificial).

- Inherent nonlinearities are those which naturally come with the system'’s hardware and

motion.

- Examples of inherent nonlinearities include centripetal forces in rotational motion, and

Couloynb friction between contacting surfaces.

Usyally, such nonlinearities have undesirable effects, and control systems have to

operly compensate for them.

Intentional nonlinearities are artificially intfroduced by the designer. Nonlinear control
laws, such as adaptive control laws and bang-bang optimal control laws, are typical

examples of infentional nonlinearities.

32



Types of Nonlinearities [1]

- Nonlinearities can also be classified in terms of their mathematical properties, as

continuous and discontinuous.

- Discontinuous nonlinearities are also called "hard" nonlinearities because they

cannot be locally approximated by linear functions.

- Hard/nonlinearities (such as, e.g., backlash, hysteresis) are commonly found in

control systems, both in small range operation and large range operation.

hether a system in small range operation should be regarded as nonlinear or
inear depends on the magnitude of the hard nonlinearities and on the extent of

their effects on the system performance.

33



Common hard Nonlinearities [4]

1 k" / q-u-

\J

L] oS

z; ) u ) u
-1

(a) Relay (b) Saturation (¢) Dead zone (d) Quantization

34




Common Nonlinearities [4]

- Saturation characteristics are common in all practical amplifiers

(electronic, pneumatic, etc) and motors. They are also used k--/——

intentionally as limiters. p

sat(u) =

u, if jul <1
sgn(u), if Jul > 1

(b) Saturation

-Déad-zone nonlinearity is typical in valves and some amplifiers at low input signals.

0 x(n[<A
NUE
K[x(r)-A-sgnx(r)] |x(r)|>A

(c)%é&d zone



Relay Nonlinearity[*]

o Relay: is an intentional nonlinearity. Ideal relay is the extreme case of saturation.
o occurs when the slope in linearity range becomes vertical .
oIt can lead to chattering due to disconftinuity.

o Relay coil require a finite amount of current to actuate (cause of dead zone).

aracteristic can exhibit hysteresis.

'; p ) ¥

W_!L“ *,,..]_4 ) S




Temperature Control: Hysteresis[*]

~ ON/OFF controller switches the actuator ON or OFF based on the set point.

~ The output frequently changes according to minute temperature changes.

© This shortens the life of the output relay or unfavorably affects some devices

connected to the Temperature Contiroller.

- To prevent this from happening, a temperature band called hysteresis is created

etween the ON and OFF operations.

[*] http://www.omron-ap.com/service_support/BF¥/FAQ00549/index.asp


http://www.omron-ap.com/service_support/FAQ/FAQ00549/index.asp
http://www.omron-ap.com/service_support/FAQ/FAQ00549/index.asp

, Temperature Control: Hysteresis[*]

Exampte LF a Tem;aem&ure Controller with a Eemyem&u,re range of (o to 4-OO°L.) has a

, 0.2% hysterests, (D) in the fiqure will be 0.%°C. 1f the set point is 100°C, the output will

turi OFF ot o process value of 100°C and will kuri ON ab a process value of 99.2°C.

Control Turns Off
Temperature I

Set Point=—s =

Control output
*

Control Turns On
» Time

[*] Teagesponse figure from



https://blog.belilove.com/2016/06/on-off-temperature-control-using-plc.html
https://blog.belilove.com/2016/06/on-off-temperature-control-using-plc.html
http://www.omron-ap.com/service_support/FAQ/FAQ00549/index.asp
http://www.omron-ap.com/service_support/FAQ/FAQ00549/index.asp

Common hard Nonlinearities

UFriction:

where F), is the normal force, i the friction coefficient and v the relative velocity of
the moving object. This is schematically represented in figure 1.2.

Fy

39



« Static Friction

* VViscous Friction

Foction force *

¥\

* Coulomb Friction

Foction force ?

Fo— | —Hkmy, for v<0
e ppmg, for v>0

>
Shding velocaty

* All Frictions Combined
Foction force *

>
Shding velocuty

Ff(v)= Fc + o,v + Fy(v)

40



Nonlinear Systems
Essential Nonlinear Phenomena




Nonlinear System Behavior [4]

We will deal with dynamical systems that are modeled by a finite number of coupled
first-order ordinary differential equations

-’bl - fl(t,xl,...,$n,U1,-.-,’U/p)
Ty = f2(t,x1a'°°,xnaul)"'aup)
Tp = fn(taxly;”1$nau17'°‘aup)

where &; denotes the derivative of x; with respect to the time variable ¢ and u;, ug,
..., Uy are specified input variables. We call the variables x;, zo, ..., T the state
variables. They represent the memory that the dynamical systemn has of its past.

42



Nonlinear System [4]

.’.bl = fl(t,:z:l,...,:cn,ul,...,up)
i?g = f2(t,$1,...,$n,’ul,...,'up)
i‘n = fn(ta$17"'7mn,ul7"'vup)

and rewrite the n first-order differential equations as one n-dimensional first-order
vector differential equation
= f(t, x,u) (1.1)

State-space Model y = h(t,z, u) @I (1.2)

(1.2) is associated with (1.1), thereby defining a g-dimensional output vector y that com-

prises variables of particular interest in the analysis of the dynamical system, (é.g.,
variables that can be physically measured or variables that are required to behave in
a\speciﬁed manner). 43




Special cases [5]

x=f(tx,u) (1.1)

< An important special case of (1.1) is when the input u is idenfically zero. In this case the

equation takes the form

% = £(t,x,0) = (1, x) (1.3)

Unforced state e@

ofice that there is no difference between the unforced system with u=0 or any other

fypction u(x,t) i.e. uis not an arbitrary variable. Substituting |u = ~(¢, z)| in (1.1) yields the

unjarced state equation.

44



Special cases [5]

¢ Another special case of (1.3) occurs Whenf does not depend explicitly on time t; that is

i = f(x) (1.4)

Autonomous or

Time Invariant

The Behavior of an autonomous system is Invariant to SHIFTS in the time origin, since

cha@nging the time from ttor=t—-a doesnotchange the right hand side of the state

45



State Equation in Linear
and Nonlinear Systems




Linear System [5 ex.1.1]: LLLL LSS LLL

Consider the mass-syn’ng system shown, using Newton’s second law we obtain: )
my = Z forces
= f(t)—fi—fs ST W y=0
where y 18 the displacement from the reference position, fs is the viscous friction force, and l"’-" ",,

fx represents the restoring force of the spring. Assuming linear properties, we have thal
fﬁ = 6!/; and fk = ki‘/ Thus,

/
Defining states 1 = y,xa = y, we obtain the following stale space realization

my + By + ky = myg.

or



Example:[5] continued

nl= L llal Ll

If our interest is in the displacement y, then

y=z1 = [1 0] [“"]

L2
/
thus, a state space realization for the mass—spring systems is given by
z = Ax+ Bu
y = Cz+ Du

with

LR F I T IS




WIS e

[5 ex. 1.2]: Nonlinear System

Consider again the sym’ng-mass system

my — 2 forces IR (TN [ o
= f(t) = fe — 5 }

In Example 1.1 we assumed linear properties for the spring. We now consider the more

realistic case of a hardening spring in which the force sirengthens as y increases. We can
approximate this model by taking

fi = ky(1 + a®y?).
With this constant, the differential equation results in the following:

mij + By + ky + ka’y® = f(¢).

\ .



WIS e

[5 ex. 1.2]: Nonlinear System

/

Defining state variables 1 = y,zo = § results in the following state space realization

. i
Ty = —-ﬁml — ﬁan? — ;%a:g + %—l

m m

/

which is of the form & = f(z,u). In particular, if u = 0, then

{ i‘l — T2
. k
o = —;:L‘l — %azxf‘ — %wg

or & = f(x).

50




Equilibrium Point [5]

n imjoormnt concept when c[ea(ing with the state ecluation is the concept of equifiﬁﬂum/voint

| Definition 1.1 A point ¢ = . in the state space is said to be an equilibrium point of thev
i autonomous system

& = f(z)

" if 1t has the property that whenever the state of the system starts at e, it rematns at x, fory
¢ all future time. }

Ay - =2 SlkSeaia B

?lcconﬁ’ng to the c[eﬁnition, the equi[i’ﬁrium points of the autonomous system in (1.4)
are the real roots of the equation

x=fx)=0

Sl




Equilibrium Point [5]

Example 1.3 Consider the following first-order system

3':=T+9:2

where r s a parameter. To find the equilibrium points of this system, we solve the equation
r+ 2% = ( and immediately obtain that

(i) If r <0, the system has two equilibrium points, namely r = +/r.

(ii) If r =0, both of the equilibrium points in (i) collapse into one and the same, and the
umique equilibrium point is = 0.

(11i) Finally, if r > 0, then the system has no equilibrium points. L]
\\ 52



Essential Nonlinear Phenomena [4]

e Multiple isolated equilibria. A linear system can have only one isolated equi-
librium point; thus, it can have only one steady-state operating point that
attracts the state of the system irrespective of the initial state. A nonlinear
system can have more than one isolated equilibrium point. The state may
converge to one of several steady-state operating points, depending on the

initial state of the system:.
Ne Example 1.2 in page 7 in[1]. ]

e Finite escape time. The state of an unstable linear system goes to infinity

as time approaches infinity; a nonlinear system’s state, however, can go to
infinity in finite time.

\ See Fig. 1.3 of Example 1.2in [1].
53




Equilibrium point [1]

Example 1.2 in page 7 in[1]. ‘x(t}

Consider the {irst order system
x=—x+x°

with initial condition x(0) = x,,. is linearizatton s 0

\

The solution of this linear equation is x(1) = x, e~¢,

(a)

VeIt s Jo[ottedl in Figure 1.3 (a) for various initial conditions.

veThe linearized system c[éa,r[y has a uniclue equiﬁ’ﬁm’um }ooin’c at x = o.

54




Equilibrium point [1]

Example 1.2 in page 7 in[1].

/»”By contrast, for the nonlinear case x = — x + x?

WThe system has two equilibrium points, X, =1,x, =0
and its clua[imtive behavior strong[y dé]oenafs on its

initial cyi{ion.
dx

NG

- dt, tﬁe actua[ 1’65}90’”56 OJ( tﬁe ’nonfinear

—x + x? Ol
c[ynamicsfc = — x+x% can be founof to be
—1
X e
x(f) = -

— —t
l —x,+x,e

v This response is Jafotteof in Figure 1.3 (b) for various initial

conditions. 55

x(t)

- trr s *rawwan

{b)

|



Equilibrium point [1]

Example 1.2 in page 7 in[1].

The issue of motion stability can also be discussed with

the aid of the above example.

w For the linearized system: stability is seen by noting that

for any initial condition, the motion always converges to

ilibrium point x = 0.

w Foy'the actual nonlinear system: motions starting with xo

1 will indeed converge to the equilibrium point x =0,
those starting with xo> | will go to infinity (actually in finite

time, a phenomenon known as finite escape time).

< This means that the stability of nonlinear systems may

epend on initial conditions. 54

X(t)

- trrr**rawwan

|

{b)



Essential Nonlinear Phenomena [4]

Limit Cycles

2 Nonlinear systems can display oscillations of fixed amplitude and fixed period

without external excitation.

2 Theseé oscillations are called limit cycles, or self-excited oscillations.

2 This important phenomenon can be simply illustrated by a famous oscillator

dynamics, first studied in the 1920's by the Dutch electrical engineer Balthasar Van

der Pol.

S7



Essential Nonlinear Phenomena
Marginally stable systems and Limit Cycles [1, 6]

2 Of course, sustained oscillations can also be found in linear systems, in

the case of marginally stable linear systems (such as a mass-spring

system without damping) or in the response to sinusoidal inputs.

2 A linear system is marginally stable if its tfransient response neither

cays nor grows, but remains constant or oscillates.

A marginally-stable linear system has non-repeated poles on the

Imaginary axis and (possibly) poles in the left half plane.

58



Essential Nonlinear Phenomena
Marginally stable systems and Limit Cycles [6]

2 Consider the following system (Transfer function): G(s) =
52+ 4
21t has two imaginary poles 51, = £ 2i

2|f we take Step response for this undamped system we notice:

ransient response neither decays to zero, nor grows without bound.

¢t Oscillates indefinitely and the system is marginally stable
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Essential Nonlinear Phenomena
Marginally stable systems and Limit Cycles [6]

2If we take Step response for this undamped system we notice: G(s) =

2

¢ It Oscillates indefinitely and the system is marginally stable

Step Response

H.W.
Simulate this
system using 3
different initial
conditions
what do you
observe?
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Essential Nonlinear Phenomena
Marginally stable systems and Limit Cycles [4]

e Limit cycles. For a linear time-invariant system to oscillate, it must have
a pair of eigenvalues on the imaginary axis, which is a nonrobust condition
that is almost impossible to maintain in the presence of perturbations. Even
if we do, the amplitude of oscillation will be dependent on the initial state.
In real life, stable oscillation must be produced by nonlinear systems. There
are nonlinear systems that can go into an oscillation of fixed amplitude and

frequency, irrespective of the initial state. Th1s type of oscillation is known
as a limit cycle.

See Example 1.3 in page 8 in[1].
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Essential Nonlinear Phenomena: Limit Cycles [1]

Example 1.3 [1]: Van der Pol Equation

The second-order nonlinear differential equation

m¥ +2c(x*—= Dx+kx =0

wherg m, ¢ and k are positive constants, is the famous Van der Pol equation.

It gan be regarded as describing a mass-spring-damper system with a position-

pendent damping coefficient 2c(x* — 1).
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Essential Nonlinear Phenomena: Limit Cycles [1]

Example 1.3 [1]: Van der Pol Equation

m¥ +2c(x*—= Dx+kx =0

M ror large‘values of x the damping coefficient is positive and the damper removes

M For small values of x, the damping coefficient is negative and the damper adds

nergy into the system. This suggests that the system motion has a divergent tendency.
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Essential Nonlinear Phenomena: Limit Cycles [1]

Example 1.3 [1]: Van der Pol Equation  mX + 2e(x* = Dx 4+ kx =0

M Therefore, because the nonlinear damping varies with x, the system motion can
neither grow unboundedly nor decay to zero. Instead, it displays a sustained

oscillation independent of initial conditions. 4 (¥

=

M Thiy'so-called limit cycle is sustained by

eriodically releasing energy into and

absorbing energy from the environment, 0

rough the damping term.
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Differences between
Linear Oscillations and Limit Cycles [1]

< Limit cycles in nonlinear systems are different from linear oscillations in a number of

fundamental aspects.

I First, the amplitude of the self-sustained excitation is independent of the initial

ndition, while the oscillation of a marginally stable linear system has its amplitude

determined by its initial conditions.

MSecond, marginally stable linear systems are very sensitive to changes in system
parameters (with a slight change capable of leading either to stable convergence

or to instability), while limit cycles are not easily affected by parameter changes.
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Limit Cycles [1]

< Limit cycles represent an important phenomenon in nonlinear systems.
“They can be found in many areas of engineering and nature.

¢ Aircraft wing fluttering, a limit cycle caused by the interaction of aerodynamic

forces and structural vibrations, is frequently encountered and is sometimes

A

dgangerous. [see https://www.youtube.com/watchav=1 DK—zGLKéGQ]

[The hopping motion of a legged robot is another instance of a limit cycle. Limit

ycles also occur in electrical circuits, e.g., in laboratory electronic oscillators.
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Essential Nonlinear Phenomena [4]

e Subharmonic, harmonic, or almost-periodic oscillations. A stable linear sys-
tem under a periodic input produces an output of the same frequency. A
nonlinear system under periodic excitation can oscillate with frequencies that
are submultiples or multiples of the input frequency. It may even generate
an almost-periodic oscillation, an example is the sum of periodic oscillations
with frequencies that are not multiples of each other.

e Chaos. A nonlinear system can have a more complicated steady-state behavior
that is not equilibrium, periodic oscillation, or almost-periodic oscillation.
Such behavior is usually referred to as chaos. Some of these chaotic motions
exhibit randomness, despite the deterministic nature of the system.

A deterministic system is a system in which the current&fates of the system determine the future ones.




Chaos [1]

2»By CHAOS we mean that the system output is extremely sensitive to initial conditions.

The essential feature of chaos is the unpredictability of the system output.

ZEven if we have an exact model of a nonlinear system and an extremely accurate

computer, the system's response in the long-run still cannot be well predicted.

2 Chaosy'must be distinguished from random motion. In random motion, the system
mogdel or input contain uncertainty and, as a result, the time variation of the output

cannot be predicted exactly (only statistical measures are available).

In chaotic motion, the involved problem is deterministic, and there is little

uncertainty in system model, input, or initial conditions.
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Chaos [1]

Chaos occurs mostly in strongly nonlinear systems. This implies that, for a given
system, if the initial condition or the external input cause the system to operate in a

highly nonlinear region, it increases the possibility of generating chaos.

Chaos ¢annot occur in linear systems. Corresponding to a sinusoidal input of arbitrary

itude, the linear system response is always a sinusoid of the same frequency.

y/contrast, the output of a given nonlinear system may display sinusoidal, periodic,
haotic behaviors, depending on the initial condition and the input magnitude.
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CHAOS Example [1]

As an example of chaotic behavior, let us consider the simple nonlinear system
P ¥+ 0.1% + x° = 6sin(?)

2which may represent a lightly-damped, sinusoidally forced mechanical structure

undergoing large elastic deflections.

following figure shows the responses of the system corresponding to two

ost identical initial conditions, namely x(0) = 2,x(0) = 3 (thick line) and

= 2.01,x(0) = 3.01 (thin line).
/0



CHAOS Example [1]

In the figure x(0) = 2,x(0) = 3 (thick line) and x(0) = 2.01,x(0) = 3.01 (thin line).

¥+ 0.1% + x° = 6sin(?)
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e to the presence of the strong nonlinearity in x°, the two responses are

\cally different after some time. 7



CHAOS Example [1]

2 Chaotic phenomena can be observed in many physical systems.

?The most commonly seen physical problem is turbulence in fluid mechanics
(such as the swirls of incense stick). Atmospheric dynamics also display clear

behavior, thus making long-term weather prediction impossible.

N\
[See the example in hitps://www.youtube.com/ ]

the context of feedback control, it is of course of interest to know when a
onlinear system will get info a chaotic mode (so as to avoid it) and, in case it

es, how to recover from it. Such problems are the object of active research.
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Essential Nonlinear Phenomena: Bifurcation [1]

WBifurcation: As the parameters of nonlinear dynamic systems are

changed, the stability of the equilibrium point can change (as it does in

linear/systems) and so can the number of equilibrium points.
~Values of these parameters at which the qualitative nature of the

stem's motion changes are known as critical or bifurcation values.
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Essential Nonlinear Phenomena: Bifurcation [1]

The phenomenon of bifurcation, i.e., quantitative change of parameters leading to

qualitative change of system properties, is the topic of bifurcation theory.

For /instance, the smoke rising from an incense stick first accelerates upwards
cause it is lighter than the ambient air), but beyond some critical velocity

aks intfo swirls.
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Essential Nonlinear Phenomena: Bifurcation [1]

For instance, the smoke rising from an incense stick first accelerates upwards
(because it is lighter than the ambient air), but beyond some critical velocity

breaks intfo swirls.

‘i‘r‘*
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