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What Is a System?

A system*: is an object in which variables of different 
kinds interact and produce observable signals: Outputs.

Its external signals are either Inputs or Disturbances. 
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*Taken from your System Identification course lecture 1

• Set of elements 
• Set of relations 
• Functioning together 

System

W(t)

u(t) y(t)



Linear Time-Invariant Systems

NOT changing over TIME

Superposition Principle 
applies 

There Two different types of systems: 
Linear and Nonlinear
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A nonlinear system is a system in which the 

change of the output is not proportional to the 

change of the input. 

Nonlinear problems are of interest because most 

systems are inherently nonlinear in nature. 

For linear systems, the controlled response is 

much more predictable. But when you close a 

control loop around a nonlinear system, 

unpredictable and chaotic behavior is expected.
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What is a Nonlinear System??
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Nonlinear Systems [1]

The subject of nonlinear control deals with the analysis and the design 

of nonlinear control systems  i.e., of control systems containing at least 

one nonlinear component. 

In the analysis, a nonlinear closed-loop system is assumed to have 

been designed, and we wish to determine the characteristics of the 

system's behavior. 

A system is nonlinear if the principle of Superposition does not apply.
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What is a Nonlinear System??
A system is nonlinear if the principle of Superposition does not apply. 

(Superposition is a Necessary and sufficient Condition for linearity). 

A system is NONLINEAR if the response to 2 or more I/Ps cannot be 

calculated by treating each I/P separately and adding the results. 

Superposition theorem: A system is linear if it is complied with the 

following mathematical properties: 

1. Additivity 

2. Homogeneity
6



Properties of Superposition [2]

1. Additivity: a signal in a linear system can be broken and processed 

individually and then it could be united again
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Properties of Superposition [2]

2. Homogeneity: The change in the input's signal amplitude results in a 

corresponding change in the output signal amplitude.
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Examples [2]

Ex.1:  

LOA  

LOH 

                                LOA and LOH are satisfied then the system is LINEAR

y(t) = x(sin(t))

x
1
(t)→ sys→ y

1
(t) = x

1
(sin(t))

x
2
(t)→ sys→ y

2
(t) = x

2
(sin(t))

y
1
(t)+ y

2
(t) = x

1
(sin(t))+ x

2
(sin(t)) ...(1)

x
1
(t)+ x

2
(t)→ sys→ y(x

1
(t)+ x

2
(t)) = x

1
(sin(t))+ x

2
(sin(t)) ...(2)

(1) = (2)

ky(t) = kx(sin(t)) ...(3)

y(kx(t)) = kx(sin(t)) ...(4)

(3) = (4) 9



Examples [2]

Ex.2:  

LOA  

No need to verify for LOH (LOA and LOH must both be TRUE) 

Then the system is NONLINEAR 

                               

y(t) = x2(t)
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Examples [2]
Ex.3 

LOA  

                       LOA is violated then system is NONLINEAR 

HomeWork: check Linearity of the following systems: 
1)y(t) = sin t x(t) 2)y(t) = e3x(t)

3)y(t) = 3log t − sin t x(t2 ) 4)y(t) = x(t +1)+ x(t −1)

x
1
(t)→ sys→ y

1
(t) = 2t + x

1
(t)

x
2
(t)→ sys→ y

2
(t) = 2t + x

2
(t)

y
1
(t)+ y

2
(t) = 4t + x

1
(t)+ x

2
(t) ...(1)

x
1
(t)+ x

2
(t)→ sys→ y(t) = 2t + x

1
(t)+ x

2
(t) ...(2)

(1) ≠ (2)

y(t) = 2t + x(t)
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Nonlinear Ordinary Differential Equations
                                  is LINEAR ODE if it can be written as follows 

where                           and  are arbitrary differentiable functions that do not need to be 

linear,                are the successive derivatives of . 

Such that: 

1. All of the dependent variable         and its derivatives are to the first power.  

2. All of         and its derivatives DO NOT appear in a nonlinear function like 

    

3. All Coefficients of         and its derivatives are PURE functions of the independent variable 

y(t).

a
0
(t)y(n) + a

1
(t)y(n−1) + ...+ a

n
(t)y = b(t) ...(**)

f (t, y, ′y ,..., y(n) )

y(t) t
y2(t), y(t),sin y(t)...etc

a
0
(t),...,a

n
(t),b(t)

y(n) ,..., ′y

y(t)

y(t)
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Nonlinear Ordinary Differential Equations
          Is the following ODE linear? 

1.                                                                  2. 

Sol.  1) Rearrange first equation to see if it matches ODE form in (**) 

Thus the first equation is LINEAR. 

       2) The first term of the second equation is the square of the 

differential coefficient, hence it is NONLINEAR 

′′y −5ty = t ′y − 25, y = f (t)

′′y (t)− t ′y (t)−5ty(t) = −25

dy

dt

⎛
⎝⎜

⎞
⎠⎟

2

− 2t2 = 0

dy

dt

⎛
⎝⎜

⎞
⎠⎟

2

− 2t2 = 0
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Nonlinear ODE System 
H.W: Check the following ODE for Linearity 

1.                                                                  2. 

3.                                                                 4. 

!!y(x)+ ex !y(x)+ y(x) = sin x

dy(x)

dx
+ y(x) = 7cos x y(2) (t)y(t) = log x

!!!y(t)+ 3y(t)!!y(t)+ y(t) = et
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System of ODE
A number of coupled differential equations form a system of equations.  

The focus will be here on the system of finite number of first order ODE: 

     If                                 have one or more nonlinear terms, then the   

system is nonlinear. 

′y
1

.

.

′y
n

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

f
1
(t,Y )

.

.
f

m
(t,Y )

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

,Y =

y
1

.

.

y
n

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

f
1
(t,Y ),..., f

m
(t,Y )
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System of Linear ODE
Example1: The following system is nonlinear since it has two nonlinear 

terms:

′y
1
= y

1
+ y

1
y

2

′y
2
= y

1
+ y

2
3
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Nonlinear Systems Examples
Frictionless PENDULUM Equation 

                                                It is a Nonlinear System

let y(t) = θ(t)

⇒ d 2 y

dt2
= − g

L sin y
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Nonlinear Systems Examples

Minimal model of glucose kinetics of Type 1 Diabetes: (BERGMAN 

minimal model) 

                            are Glucose and interstitial and plasma insulin respectively. 

                                            are constants.

G(t), X (t), I(t)

G
b
, I

b
, p

i
, i = 1,..5
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Nonlinear Systems Behavior
Example 1.1 of [1]: A simplified model of the motion of an underwater vehicle 

can be written 

!v + |v|v =u

(Figure 1.1)

https://www.ecagroup.com/en/solutions/a9-e-auv-autonomous-underwater-vehicle

19
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Applying u=10 on the system: !v + |v|v =u

(Figure 1.2)

Example 1.1 of [1]..ctd

20



Example 1.1 of [1]..ctd

The settling speed  in response to the first step is not 10  times that obtained in response to the 

first unit step in the first experiment, as it would be in a linear system. 

This can be understood intuitively, by setting steady state in equation (1): 

Carefully understanding and effectively controlling this nonlinear behavior is particularly 

important if the vehicle is to move in a large dynamic range and change speeds continually, as 

is typical of industrial remotely-operated underwater vehicles.

(vs)

u = 1 ⟹ 0 + ∣ vs ∣ vs = 1 ⟹ vs = 1

u = 10 ⟹ 0 + ∣ vs ∣ vs = 10 ⟹ vs = 10 ≈ 3.2

·v + |v |v = u (1)
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NONLINEAR Systems [1]

-Physical systems are inherently nonlinear. Thus, all control systems 

are nonlinear to a certain extent.  

-However, if the operating range of a control system is small, and if 

the involved nonlinearities are smooth, then the control system may 

be reasonably approximated by a linearized system. Its dynamics is 

described by a set of linear differential equations. 

Ex. Pendulum equation, if the range of the movement is small (small 

angle Approximation): d2θ
dt2

=
−g
l

sinθ if θ ≈ 0 ⟹ sinθ = θ ⟹
d2θ
dt2

=
−g
l

θ
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WHY Nonlinear Control? [1]
1. Improvement of existing control systems:  

Linear control methods rely on the key assumption of small 

range operation for the linear model to be valid.  

When the required operation range is large, a linear controller is 

likely to perform very poorly or to be unstable, because the 

nonlinearities in the system cannot be properly compensated for.  

Nonlinear controllers, on the other hand, may handle the 

nonlinearities in large range operation directly.
23



WHY Nonlinear Control? [1]

1. Improvement of existing control systems (Robot Example): 

• This point is easily demonstrated in robot motion control problems. 

• When a linear controller is used to control robot motion, it neglects 

the nonlinear forces associated with the motion of the robot links.  

• The controller's accuracy thus quickly degrades as the speed of 

motion increases, because many of the dynamic forces involved, 

such as Coriolis and centripetal forces, vary as the square of the 

speed.
24



1. 2DOF Robot example[3]: 
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WHY Nonlinear Control? [1]

1. Improvement of existing control systems (Robot example): 

• Therefore, in order to achieve a pre-specified accuracy in robot tasks 

such as pick-and-place, arc welding and laser cutting, the speed of 

robot motion, and thus productivity, has to be kept low.  

• On the other hand, a conceptually simple nonlinear controller, 

commonly called computed torque controller, can fully compensate 

the nonlinear forces in the robot motion and lead to high accuracy 

control for a very large range of robot speeds and a large workspace.
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WHY Nonlinear Control?
Example:    A single-joint robot rotating under gravity [3] 

 Consider a single motor attached to a single link, as shown. Let  be the motor's torque and    be 

the angle of the link. The dynamics with the friction torque can be written as

τ θ

27



Example:    A single-joint robot rotating under gravity[3] pp. 429-430 

                                                                    

                    suppose we have a model of the robot arm as follows 

                      substitute (*) in eq. (**) yields: 

!!θ
e
+ K

d
!θ

e
+ K

p
θ

e
+ K

i
θ

e
(t)dt = 0∫

τ = !M !!θ + !h( !θ ,θ ) (**)

!!θ = !!θ
d
+ K

d
!θ

e
+ K

p
θ

e
+ K

i
θ

e
(t)dt (*)∫
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Example: Robotic Arm with computed torque control [3] pp. 429-433 

 A conceptually simple nonlinear controller, commonly called computed torque controller, can fully 

compensate the nonlinear forces in the robot motion and lead to control for a very large range of robot 

speeds and a large workspace. 

                                                                                     

                                                                     

                                                                                      

                                     

                       

Actual Robot arm

Computed Torque Control

!!θ
e
+ K

d
!θ

e
+ K

p
θ

e
+ K

i
θ

e
(t)dt = 0∫

linear error dynamics 29



WHY Nonlinear Control? [1]
2. Analysis of hard nonlinearities: 

-In control systems there are many nonlinearities whose discontinuous 

nature does not allow linear approximation. These so-called "hard 

nonlinearities" include Coulomb friction, saturation, dead-zones, 

backlash, and hysteresis, and are often found in control engineering.  

-Nonlinear analysis techniques must be developed to predict a 

system's performance in the presence of these inherent nonlinearities.  

-Because such nonlinearities frequently cause undesirable behavior 

like instabilities, their effects must be predicted and properly 

compensated for.
30



WHY Nonlinear Control? [1]
 There may be other reasons to use nonlinear control techniques, such as cost 

and performance optimality. As for performance optimality, we can cite bang-

bang type controllers, which can produce fast response, but are inherently 

nonlinear.  

 In the past, the application of nonlinear control methods had been limited by 

the computational difficulty associated with nonlinear control design and 

analysis.  

 In recent years, however, advances in computer technology have greatly 

relieved this problem. 

More details  can be found in Section 1.1 in [1].
31



Types of Nonlinearities [1] 
- Nonlinearities can be classified as inherent (natural) and intentional (artificial). 

- Inherent nonlinearities are those which naturally come with the system's hardware and 

motion.  

- Examples of inherent nonlinearities include centripetal forces in rotational motion, and 

Coulomb friction between contacting surfaces.  

- Usually, such nonlinearities have undesirable effects, and control systems have to 

properly compensate for them.  

- Intentional nonlinearities are artificially introduced by the designer. Nonlinear control 

laws, such as adaptive control laws and bang-bang optimal control laws, are typical 

examples of intentional nonlinearities.
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Types of Nonlinearities [1] 
- Nonlinearities can also be classified in terms of their mathematical properties, as 

continuous and discontinuous.  

- Discontinuous nonlinearities are also called ”hard“ nonlinearities because they 

cannot be locally approximated by linear functions. 

- Hard nonlinearities (such as, e.g., backlash, hysteresis) are commonly found in 

control systems, both in small range operation and large range operation. 

- Whether a system in small range operation should be regarded as nonlinear or 

linear depends on the magnitude of the hard nonlinearities and on the extent of 

their effects on the system performance.
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Common hard Nonlinearities [4] 
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Common Nonlinearities [4] 
- Saturation characteristics are common in all practical amplifiers 

(electronic, pneumatic, etc) and motors. They are also used 

intentionally as limiters.

-Dead-zone nonlinearity is typical in valves and some amplifiers at low input signals.

35



Relay Nonlinearity[*] 

Relay: is an intentional nonlinearity. Ideal relay is the extreme case of saturation.  

occurs when the slope in linearity range becomes vertical .  

It can lead to chattering due to discontinuity.  

 Relay coil require a finite amount of current to actuate (cause of dead zone). 

Relay characteristic can exhibit hysteresis. 

[*] https://www.slideshare.net/nidaunapprochablesta/types-of-nonlinearities36



Temperature Control: Hysteresis[*]

ON/OFF controller switches the actuator ON or OFF based on the set point.  

The output frequently changes according to minute temperature changes. 

 This shortens the life of the output relay or unfavorably affects some devices 

connected to the Temperature Controller.  

To prevent this from happening, a temperature band called hysteresis is created 

between the ON and OFF operations.

[*] http://www.omron-ap.com/service_support/FAQ/FAQ00549/index.asp37

http://www.omron-ap.com/service_support/FAQ/FAQ00549/index.asp
http://www.omron-ap.com/service_support/FAQ/FAQ00549/index.asp


Example: If a Temperature Controller with a temperature range of (0 to 400°C) has a 

0.2% hysteresis, (D) in the figure will be 0.8°C. If the set point is 100°C, the output will 

turn OFF at a process value of 100°C and will turn ON at a process value of 99.2°C.

Temperature Control: Hysteresis[*]

Temp.response figure from https://blog.belilove.com/2016/06/on-off-temperature-control-using-plc.html[*] http://www.omron-ap.com/service_support/FAQ/FAQ00549/index.asp 38

https://blog.belilove.com/2016/06/on-off-temperature-control-using-plc.html
https://blog.belilove.com/2016/06/on-off-temperature-control-using-plc.html
http://www.omron-ap.com/service_support/FAQ/FAQ00549/index.asp
http://www.omron-ap.com/service_support/FAQ/FAQ00549/index.asp


Common hard Nonlinearities
Friction:

39
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Nonlinear Systems 
Essential Nonlinear Phenomena  
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Nonlinear System Behavior [4]
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Nonlinear System [4]

State-space Model Output

43



Special cases [5]

An important special case of (1.1) is when the input u is identically zero. In this case the 

equation takes the form 

Notice that there is no difference between the unforced system with u=0 or any other 

function u(x,t) i.e. u is not an arbitrary variable. Substituting                     in (1.1) yields the 

unforced state equation.

Unforced state equation

·x = f(t, x,0) = f(t, x) (1.3)

·x = f(t, x, u) (1.1)

44



Another special case of (1.3) occurs when f  does not depend explicitly on time t; that is 

The behavior of an autonomous system is Invariant to SHIFTS in the time origin, since 

changing the time from                            does not change the right hand side of the state 

equation (1.4).            

·x = f(x) (1.4)

Autonomous or 
Time Invariant

Special cases [5]
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State Equation in Linear 
and Nonlinear Systems

46



Example: Linear System [5 ex.1.1]: 
Consider the mass-spring system shown, using Newton’s second law we obtain:                                                                   

47



Example:[5] continued 
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Example [5 ex. 1.2]: Nonlinear System 
Consider again the spring-mass system
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Example [5 ex. 1.2]: Nonlinear System 
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Equilibrium Point [5]
An important concept when dealing with the state equation is the concept of equilibrium point.

·x = f(x) = 0

According to the definition, the equilibrium points of the autonomous system in (1.4) 
are the real roots of the equation 
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Equilibrium Point [5]
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Essential Nonlinear Phenomena [4]

See Example 1.2 in page 7 in[1]. 
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Example 1.2 in page 7 in[1]. 

It is plotted in Figure 1.3(a) for various initial conditions. 

The linearized system clearly has a unique equilibrium point at x = 0.

Equilibrium point [1]
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Equilibrium point [1]
Example 1.2 in page 7 in[1]. 

By contrast, for the nonlinear case ·x = − x + x2

The system has two equilibrium points, 
and its qualitative behavior strongly depends on its 
initial condition.

xe1
= 1, xe2

= 0

x(t) =
xoe−t

1 − xo + xoe−t

, the actual response of the nonlinear 

dynamics   can be found to be

dx
−x + x2

= dt
·x = − x + x2

This response is plotted in Figure 1.3(b) for various initial 
conditions. 55



Equilibrium point [1]
Example 1.2 in page 7 in[1]. 

The issue of motion stability can also be discussed with 

the aid of the above example.  

For the linearized system: stability is seen by noting that 

for any initial condition, the motion always converges to 

the equilibrium point x = 0. 

For the actual nonlinear system: motions starting with xo 

< 1 will indeed converge to the equilibrium point x = 0, 

those starting with xo> I will go to infinity (actually in finite 

time, a phenomenon known as finite escape time).  

This means that the stability of nonlinear systems may 

depend on initial conditions.
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Essential Nonlinear Phenomena [4]

Limit Cycles 

Nonlinear systems can display oscillations of fixed amplitude and fixed period 

without external excitation.  

These oscillations are called limit cycles, or self-excited oscillations.  

This important phenomenon can be simply illustrated by a famous oscillator 

dynamics, first studied in the 1920's by the Dutch electrical engineer Balthasar Van 

der Pol.
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Essential Nonlinear Phenomena  
Marginally stable systems and Limit Cycles [1, 6]

Of course, sustained oscillations can also be found in linear systems, in 

the case of marginally stable linear systems (such as a mass-spring 

system without damping) or in the response to sinusoidal inputs. 

A linear system is marginally stable if its transient response neither 

decays nor grows, but remains constant or oscillates. 

A marginally-stable linear system has non-repeated poles on the 

imaginary axis and (possibly) poles in the left half plane.
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Essential Nonlinear Phenomena  
Marginally stable systems and Limit Cycles [6]

Consider the following system (Transfer function): 

It has two imaginary poles 

If we take Step response for this undamped system we notice: 

Transient response neither decays to zero, nor grows without bound. 

It Oscillates indefinitely and the system is marginally stable

G(s) =
4

s2 + 4
s1,2 = ± 2i

59



Essential Nonlinear Phenomena  
Marginally stable systems and Limit Cycles [6]

If we take Step response for this undamped system we notice: 

Transient response neither decays to zero, nor grows without bound. 

It Oscillates indefinitely and the system is marginally stable

G(s) =
4

s2 + 4

H.W.  
Simulate this 

system using 3 
different initial 

conditions 
what do you 

observe?
60



See Example 1.3 in page 8 in[1]. 

Essential Nonlinear Phenomena  
Marginally stable systems and Limit Cycles [4]
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Example 1.3 [1]: Van der Pol Equation 

 The second-order nonlinear differential equation 

where m, c and k are positive constants, is the famous Van der Pol equation. 

It can be regarded as describing a mass-spring-damper system with a position-

dependent damping coefficient .2c(x2 − 1)

m ··x + 2c(x2 − 1) ·x + kx = 0

Essential Nonlinear Phenomena: Limit Cycles [1]
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Essential Nonlinear Phenomena: Limit Cycles [1]

Example 1.3 [1]: Van der Pol Equation 

For large values of  the damping coefficient is positive and the damper removes 

energy from the system. This implies that the system motion has a convergent 

tendency. 

For small values of , the damping coefficient is negative and the damper adds 

energy into the system. This suggests that the system motion has a divergent tendency.

x

x

m ··x + 2c(x2 − 1) ·x + kx = 0

63



Essential Nonlinear Phenomena: Limit Cycles [1]

Example 1.3 [1]: Van der Pol Equation 

Therefore, because the nonlinear damping varies with x, the system motion can 

neither grow unboundedly nor decay to zero. Instead, it displays a sustained 

oscillation independent of initial conditions.

m ··x + 2c(x2 − 1) ·x + kx = 0

This so-called limit cycle is sustained by 

periodically releasing energy into and 

absorbing energy from the environment, 

through the damping term.
64



Limit cycles in nonlinear systems are different from linear oscillations in a number of 

fundamental aspects.  

First, the amplitude of the self-sustained excitation is independent of the initial 

condition, while the oscillation of a marginally stable linear system has its amplitude 

determined by its initial conditions. 

Second, marginally stable linear systems are very sensitive to changes in system 

parameters (with a slight change capable of leading either to stable convergence 

or to instability), while limit cycles are not easily affected by parameter changes.

Differences between 
Linear Oscillations and Limit Cycles [1]
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Limit cycles represent an important phenomenon in nonlinear systems.  

They can be found in many areas of engineering and nature.  

Aircraft wing fluttering, a limit cycle caused by the interaction of aerodynamic 

forces and structural vibrations, is frequently encountered and is sometimes 

dangerous. 

The hopping motion of a legged robot is another instance of a limit cycle. Limit 

cycles also occur in electrical circuits, e.g., in laboratory electronic oscillators.

Limit Cycles [1]

see https://www.youtube.com/watch?v=1DK-zGLK6GQ 
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Essential Nonlinear Phenomena [4]

A deterministic system is a system in which the current states of the system determine the future ones.67



By CHAOS we mean that the system output is extremely sensitive to initial conditions. 

The essential feature of chaos is the unpredictability of the system output.  

Even if we have an exact model of a nonlinear system and an extremely accurate 

computer, the system's response in the long-run still cannot be well predicted. 

Chaos must be distinguished from random motion. In random motion, the system 

model or input contain uncertainty and, as a result, the time variation of the output 

cannot be predicted exactly (only statistical measures are available).  

In chaotic motion, the involved problem is deterministic, and there is little 

uncertainty in system model, input, or initial conditions.

Chaos [1]
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Chaos [1]
Chaos occurs mostly in strongly nonlinear systems. This implies that, for a given 

system, if the initial condition or the external input cause the system to operate in a 

highly nonlinear region, it increases the possibility of generating chaos.  

Chaos cannot occur in linear systems. Corresponding to a sinusoidal input of arbitrary 

magnitude, the linear system response is always a sinusoid of the same frequency.  

By contrast, the output of a given nonlinear system may display sinusoidal, periodic, 

or chaotic behaviors, depending on the initial condition and the input magnitude.
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CHAOS Example [1]

As an example of chaotic behavior, let us consider the simple nonlinear system 

 

which may represent a lightly-damped, sinusoidally forced mechanical structure 

undergoing large elastic deflections. 

The following figure shows the responses of the system corresponding to two 

almost identical initial conditions, namely  (thick line) and 

 (thin line).

··x + 0.1 ·x + x5 = 6sin(t)

x(0) = 2, ·x(0) = 3

x(0) = 2.01, ·x(0) = 3.01
70



CHAOS Example [1]

In the figure  (thick line) and  (thin line). 

Due to the presence of the strong nonlinearity in , the two responses are 

radically different after some time.

x(0) = 2, ·x(0) = 3 x(0) = 2.01, ·x(0) = 3.01

x5

··x + 0.1 ·x + x5 = 6sin(t)
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CHAOS Example [1]

Chaotic phenomena can be observed in many physical systems.  

The most commonly seen physical problem is turbulence in fluid mechanics 

(such as the swirls of incense stick). Atmospheric dynamics also display clear 

chaotic behavior, thus making long-term weather prediction impossible. 

In the context of feedback control, it is of course of interest to know when a 

nonlinear system will get into a chaotic mode (so as to avoid it) and, in case it 

does, how to recover from it.  Such problems are the object of active research.

See the example in https://www.youtube.com/

72
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Bifurcation: As the parameters of nonlinear dynamic systems are 

changed, the stability of the equilibrium point can change (as it does in 

linear systems) and so can the number of equilibrium points.

Values of these parameters at which the qualitative nature of the 

system's motion changes are known as critical or bifurcation values. 

Essential Nonlinear Phenomena: Bifurcation [1]
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Essential Nonlinear Phenomena: Bifurcation [1]

The phenomenon of bifurcation, i.e., quantitative change of parameters leading to 

qualitative change of system properties, is the topic of bifurcation theory. 

For instance, the smoke rising from an incense stick first accelerates upwards 

(because it is lighter than the ambient air), but beyond some critical velocity 

breaks into swirls.     
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