
Microprocessors
Techniques I

YAMAMA A. SHAFEEK

Introduction
A Microprocessor incorporates most or all of the functions of a computer's central processing
unit (CPU) on a single integrated circuit. It is the part of the microcomputer that executes
instructions of the program and processes data. It is responsible for performing all arithmetic
operations and making the logical decisions initiated by the computer’s program. In addition to
arithmetic and logic functions, the MPU controls overall system operation.

Microcomputer System
The hardware of a microcomputer system can be divided into four functional sections:

Input unit

Microprocessing Unit

Memory Unit

Output Unit.

Software Architecture
The 8086 microprocessor employs parallel processing – that is, it is implemented with several
simultaneously operating processing units. It contains two processing units: the Bus Interface
Unit (BIU) and the Execution Unit (EU).

Each unit has dedicated functions and both operate at the same time. This parallel processing
makes the fetch and execution of instructions independent operations. This results in efficient
use of the system bus and higher performance for the microcomputer system.

Execution & Bus Interface Units

Bus Interface Unit
The BIU is responsible for performing all external bus operations, such as:

 Instruction fetching

Reading and writing of data operands for memory

Address generating

Inputting or outputting data for input/output peripherals

instruction queuing

These operations take place over the system bus. This bus includes 16-bit bidirectional data bus, a 20-
bit address bus, and the signals needed to control transfer over the bus.

The BIU uses a mechanism known as instruction queue to implement a pipelined architecture. This
queue permits the 8086 to prefetch up to 6 bytes of instruction code. Whenever the queue is not full,
the BIU is free to look ahead in the program by prefetching the next sequential instructions.

Execution Unit
The EU is responsible for two tasks:

Decoding instructions

Executing instructions

It accesses instructions from the output end of the instruction queue and data from the general-
purpose registers or memory. It reads one instruction byte after the other from the output of
the queue, decodes them, generates data addresses if necessary, passes them to the BIU and
requests it to perform the read or write operations to memory or I/O, and perform the
operation specified by the instruction.

Software Model
The software model of 8086 includes 13 16-bit internal registers: the instruction pointer, four
data registers, two pointer registers, two index registers, and four segment registers. In addition,
there is status register with nine of its bits implemented as status & control flags.

The 8086 architecture implements independent memory and input/output spaces; the memory
address space is 1048576 bytes (1Mbyte) in length and I/O address space is 65536 bytes
(64Kbyte) in length.

Memory Segmentation
Even though the 8086 has a 1Mbyte address space, not all this memory is active at one time.
Actually, the 1Mbytes of memory are partitioned into 64Kbyte (65,536) segments.

A segment represents an independently addressable unit of memory consisting of 64 K
consecutive byte-wide storage locations. Each segment is assigned a base address that identifies
its starting point (its lowest address byte-storage location).

Only four of these 64 Kbytes segments are active at a time: the code segment, stack segment,
data segment, and extra segment.

Internal Registers
Segment Registers The segments of memory that are active are identified by the values of
addresses held in 8086’s four internal segment registers: CS (code segment), SS (stack segment),
DS (data segment), and ES (extra segment). Each of these registers contains a 16-bit base
address that points to the lowest addressed byte of the segment in memory.

Instruction Pointer Register It is also 16-bit in length and identifies the location of the next
word of instruction code to be fetched from the current code segment of memory. It contains
the offset of the next word of instruction code instead of its actual address. Every time a word of
code is fetched from memory, the 8086 updates the value in IP such that it points to the first
byte of the next sequential word of code (IP incremented by 2).

Internal Registers
Data Registers The 8086 has four general purpose data registers: the accumulator register (A),
the base register (B), the count register (C), and the data register (D). These names imply special
functions they are meant to perform.

Dedicated Registers Functions
During program execution they hold temporary values of frequently used intermediate results.
The advantage of storing these data in internal registers instead of memory during processing is
that they can be accessed much faster. Each of these registers can be accessed either as a whole
16-bit (for word data operations) or as two 8-bit registers (for byte wide data operations). When
software places a new value in one byte of a register, for instance AL, the value in the other byte
(AH), does not change.

Register operation

AX Word multiply, word divide, word I/O

AL Byte multiply, byte divide, byte I/O, translate, decimal arithmetic

AH Byte multiply, byte divide

BX Translate

CX String operations, loops

CL Variable shift and rotate

DX Word multiply, word divide, indirect I/O

Internal Registers
Pointer Registers They store offset addresses (the displacement of a storage location in
memory from the segment base address in a segment register). Software uses the value held in
a pointer register to access memory locations relative to the stack segment register. They are
only accessed as words. The two pointer registers are: the stack pointer (SP) and base pointer
(BP). The value in SP always represents the offset of the next stack location that is to be
accessed (Top of Stack). BP also represents an offset relative to the SS. One common use of BP is
to reference parameters that are passed to a subroutine by way of the stack.

Indexed Registers They also store offset addresses from the data segment or extra segment
registers. They are only accessed as words. For some operations, an operand that is to be
processed may be located in memory instead of the internal registers. In this case, an index
address is used to identify the location of the operand in memory. The source index (SI) register
holds an offset address that identifies the location of a source operand, and the destination
index (DI) register holds an offset for a destination operand.

Internal Registers
Status Register (flag register) Is 16-bit register in which only nine of its bits are implemented.
Six of these bits represent status flags: the carry flag (CF), parity flag (PF), auxiliary flag (AF), zero
flag (ZF), sign flag (SF), and overflow flag (OF). The logic state of these status flags indicate
conditions that are produced as the result of executing an instruction. The other three flags that
provide control functions are: the direction flag (DF), interrupt flag (IF), and trap flag (TF). The
instruction set of the 8086 includes instructions for saving, loading, or manipulation the flags.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X OF DF IF TF SF ZF X AF X PF X CF

Status Flags
The carry flag: CF is set if there is a carry-out or a borrow-in for the most significant bit of the
result during the execution of an instruction. Otherwise CF is reset.

The parity flag: PF is set if the result produced by the instruction has even parity (if it contains
an even number of bits at the 1 logic level). If parity is odd, PF is reset.

The auxiliary flag: AF is set if there is a carry-out from the low nibble into the high nibble or a
borrow-in from the high nibble into the low nibble of the lower byte in a 16-bit word.
Otherwise, AF is reset.

The zero flag: ZF is set if the result produced by an instruction is zero. Otherwise, ZF is reset.

The sign flag: The MSB of the result is copied into SF. Thus, SF is set if the result is a negative
number or reset if it is positive.

The overflow flag: When OF is set, it indicates that the signed result is out of range. If the
result is not out of range, OF remains reset.

Control Flags
The trap flag: If TF is set, the 8086 goes into the single-step mode of operation. When in the
single-step mode, it executes an instruction and then jumps to a special service routine that may
determine the effect of executing the instruction. This type of operation is very useful for
debugging programs.

The interrupt flag: For the 8086 to recognize maskable interrupt requests at its interrupt (INT)
input, the IF flag must be set. When IF is reset, requests at INT are ignored and the maskable
interrupt interface is disabled.

The direction flag: The logic level of DF determines the direction in which string operations will
occur. When set, the string instructions automatically decrement the address; therefore the
string data transfers proceed from high address to low address. On the other hand, resetting DF
causes the string address to be incremented (data transfers proceed from low address to high
address).

Generating a Memory Address
A segment base and an offset describe a logical address; both are 16-bit quantities. However,
the physical address that is used to access memory is 20-bits in length. The generation of the
physical address involves combining a 16-bit offset value (located in IP, BX, SI, DI, SP, or BP) and a
16-bit segment base value (located in CS, DS, SS, or ES).

The segment base address represents the starting location of the 64 Kbyte segment in memory
– that is, the lowest address byte in the segment. The offset identifies the distance in bytes that
the storage location of interest resides from this starting address. Therefore, the lowest address
byte in a segment has an offset of 000016, and the highest address byte has an offset of FFFF16.

To obtain the physical address, the value in the segment register is shifted left by four bits (with
its LSBs filled with zeros). The offset value is then added. The result of this addition is 20-bit
physical address.

Software
A microcomputer does not know how to process data, it must be told where to get data, what
to do with the data, and where to put the results when it is done. These are the jobs of the
software.

The sequence of commands to tell a microcomputer what to do is called a program.

Each command in a program is an instruction.

Programs must always be coded in machine language before they can be executed by the
microprocessor.

A program written in machine language is often referred to as machine code (instruction is
encoded using 0s and 1s). It is almost impossible to write programs directly in machine
language. For this reason, programs are normally written in 8086 assembly language or a high-
level language such as C.

Software
In assembly language, each of the operations is described with alphanumeric symbols instead of 0s
and 1s.

An instruction can be divided into two parts: operation code (opcode) and operands.

The opcode is the part of instruction that identifies the operation that is to be performed (add,
subtract, move, …). Each opcode is assigned a unique letter combination called a mnemonic (ADD,
SUB, MOV, …).

Operands describe the data are to be processed as the microprocessor carries out the operation
specified by the opcode. They identify whether the source and destination of the data are registers
within the MPU or storage locations in data memory.

The assembler is the program that translates the assembly language programs to an equivalent
machine language program for execution by microprocessor.

The compiler is the program that converts high-level language statements to machine code
instructions.

Addressing Modes
An addressing mode is a method of specifying an operand. The 8086 is provided with various
addressing modes to access operands categorized as following:

Register operand addressing mode

Immediate operand addressing mode

Memory operand addressing modes
Direct addressing mode

Register indirect addressing mode

Based addressing mode

Indexed addressing mode

Based-indexed addressing mode

Register Operand Addressing Mode
The operand to be accessed is specified as residing in an internal register.

For example: MOV AX, BX

This stands for “move the content of BX (source operand) to AX (destination operand)”. Assume
the following values in registers and memory (on the left) just prior to execute the above
instruction. The result of executing the instruction is that the content of BX (the value ABCD) is
copied into AX as shown (on the right).

Immediate Operand Addressing Mode
The operand to be accessed is part of instruction. It can be 8-bit or 16-bit in length. This
addressing mode can only be used to specify a source operand.

For example: MOV AL, 15H

The result produced by executing this instruction is that the immediate operand (15H) is loaded
into the lower byte of accumulator (AL).

Memory Operand Addressing Modes
Direct addressing mode the instruction op-code is followed by effective address.

For example: MOV CX, [1234H]

This stands for “move the content of memory location with offset 1234H in the current data
segment to CX”. Assume the following values in registers and memory just prior to execute the
above instruction

As the instruction is executed, the 8086 combines 1234H with 0200H to get physical address of
source operand. Then it reads the word of data starting at this address (BEEDH) and loads it to
the CX register.

Memory Operand Addressing Modes
Register indirect addressing mode the effective address resides in either a base register (BX or
BP) or an index register (SI or DI).

For example: MOV AX, [SI]

Executing this instruction moves the content of location whose offset is in register SI into AX.

Memory Operand Addressing Modes
Based addressing mode the effective address of the operand is obtained by adding a direct
displacement to the content of either BX or BP register.

For example: MOV [BX] + 1234H, AL

The physical address of the destination operand is obtained from the contents of DS, BX, and the
direct displacement then the content of AL is written into this location.

If BP is used instead of BX, the calculation of the physical address is performed using the content
of the stack segment register instead of data segment.

Memory Operand Addressing Modes

Memory Operand Addressing Modes
Indexed addressing mode the physical address is obtained from the value in a segment
register, an index register (SI or DI), and a displacement.

For example: MOV AL, [SI] + 1234H

First the physical address of the source operand is calculated from the contents of DS, SI, and
the direct displacement. The byte stored at this location is read into AL.

Memory Operand Addressing Modes

Memory Operand Addressing Modes
Based-indexed addressing mode combines the based and indexed addressing modes.

For example: MOV AH, [BX] [SI] + 1234H

The physical address of the source operand is computed from the current content of DS, BX, SI,
and the direct displacement. Execution of the instruction causes the value stored at this location
to be read into AH.

Memory Operand Addressing Modes

Arithmetic Instructions
Addition Instructions

Mnemonic Meaning Format Operation
Flags

affected

ADD Addition ADD D, S
(S) + (D) (D)

Carry (CF)

OF, SF, ZF,

AF,PF, CF

ADC
Add with

carry
ADC D, S

(S) + (D) + (CF) (D)

Carry (CF)

OF, SF, ZF,

AF,PF, CF

INC
Increment

by 1
INC D (D) + 1 (D)

OF, SF, ZF,

AF,PF

AAA

ASCII

adjust for

addition

AAA

AF, CF

(OF, SF, ZF,

PFundefined)

DAA

Decimal

adjust for

addition

DAA

(SF, ZF, AF, PF,

CF, OF

undefined)

Arithmetic Instructions
Subtraction Instructions

Mnemonic Meaning Format Operation Flags affected

SUB Subtract SUB D, S
(D) - (S) (D)

Borrow (CF)
OF, SF, ZF, AF,PF, CF

SBB
Subtract with

borrow
SBB D, S

(D) - (S) - (CF) (D)

Borrow (CF)
OF, SF, ZF, AF,PF, CF

DEC Decrement by 1 DEC D (D) - 1 (D) OF, SF, ZF, AF,PF

NEG Negate NEG D
0 – (D) (D)

1 (CF)
OF, SF, ZF, AF,PF, CF

DAS
Decimal adjust

for subtraction
DAS

SF, ZF,AF, PF, CF

(OF undefined)

AAS
ASCII adjust for

subtraction
AAS

AF, CF

(OF, SF, ZF, PF

undefined)

Arithmetic Instructions
Multiplication and Division Instructions

Mnemonic Meaning Format Operation Flags affected

MUL
Multiplication

(unsigned)
MUL S

(AL).(S8) (AX)

(AX).(S16) (DX),(AX)

OF, CF

(SF, ZF, AF, PF

undefined)

DIV Division (unsigned) DIV S

(1) Q((AX)/(S8)) (AL)

R((AX)/(S8)) (AH)

(2) Q((DX,AX)/(S16)) (AX)

R((DX,AX)/(S16) (DX)

(OF, SF, ZF, AF, PF, CF

undefined)

IMUL
Integer multiplication

(signed)
IMUL S

(AL).(S8) (AX)

(AX).(S16) (DX),(AX)

OF, CF

(SF, ZF, AF, PF

undefined)

IDIV
Integer division

(signed)
IDIV S

(1) Q((AX)/(S8)) (AL)

R((AX)/(S8)) (AH)

(2) Q((DX,AX)/(S16)) (AX)

R((DX,AX)/(S16) (DX)

(OF, SF, ZF, AF, PF, CF

undefined)

Arithmetic Instructions

Mnemonic Meaning Format Operation Flags affected

AAM
Adjust AL for

multiplication
AAM

Q((AL)/10) (AH)

R((AL)/10) (AL)

SF, ZF, PF

(OF, AF, CF

undefined)

AAD
Adjust AX for

division
AAD

(AH).10 + (AL) (AL)

00 (AH)

SF, ZF, PF

(OF, AF, CF

undefined)

CBW
Convert byte

to word
CBW (MSBit of AL) (All bits of AH) None

CWD

Convert word

to double

word

CWD (MSBit of AX) (All bits of DX) None

Multiplication and Division Instructions (continued)

Logic Instructions
The 8086 has instructions for performing the logic operations AND, OR, exclusive-OR, and NOT
bit-wise on byte-wide and word-wide data.

Mnemonic Meaning Format Operation Flags affected

AND Logical AND AND D, S (S) . (D) (D)
OF, SF, ZF, PF, CF

(AF undefined)

OR Logical OR OR D, S (S) + (D) (D)
OF, SF, ZF, PF, CF

(AF undefined)

XOR
Logical

Exclusive-OR
XOR D, S (S) (D) (D)

OF, SF, ZF, PF, CF

(AF undefined)

NOT Logical NOT NOT D (D) (D) None

Arithmetic Instructions
CBW Instruction extends the sign of the dividend to fill AX register (the sign extension does not
change the value for the data).

CWD Instruction extends the sign of the dividend to fill DX register (the sign extension does not
change the value for the data).

The last two instructions are used to allow division of 8-bit dividend in AL by 8-bit divisor and 16-
bit dividend in AX by 16-bit divisor

Shift Instructions
Mnemonic Meaning Format Operation Flags affected

SAL/SHL
Shift arithmetic left/

Shift logical left
SAL/SHL D, Count

Shift the (D) left by the number of bit positions

equal to Count and fill the vacated bits positions

on the right with zeros

CF, PF, SF, ZF

(AF undefined)

(OF undefined if count

≠ 1)

SHR Shift logical right SHR D, Count

Shift the (D) right by the number of bit positions

equal to Count and fill the vacated bits positions

on the left with zeros

CF, PF, SF, ZF

(AF undefined)

(OF undefined if count

≠ 1)

SAR Shift arithmetic right SAR D, Count

Shift the (D) right by the number of bit positions

equal to Count and fill the vacated bits positions

on the left with the original MSBit

CF, PF, SF, ZF

(AF undefined)

(OF undefined if count

≠ 1)

Logic Instructions
AND Instruction causes the content of source operand to be ANDed with the contents of
destination operand. The result is reflected by the new content of destination. AND instruction is
used to clear certain bit(s) of a byte or word.

OR Instruction used to set bit(s) in register or a storage location in memory.

XOR Instruction used to reverse the logic level of bit(s) in register or a storage location in
memory (toggling the bit).

NOT Instruction used to obtain the 1’s complement of destination operand (internal register or
a location in memory).

Shift Instructions
SAL/SHL Instruction shifts the destination operand (register or storage location in memory) to
the left by number of bits specified by count. The count can be either 1 for 1-bit shift, or the
value in CL for more than 1-bit shift. The vacated LSBit locations is filled with zero and the last bit
shifted out of the MSBit is saved in CF.

SHR Instruction shifts the destination operand (register or storage location in memory) to the
right by number of bits specified by count. The vacated MSBit locations is filled with zero and
the last bit shifted out of the LSBit is saved in CF.

Shift Instructions
SAR Instruction shifts the destination operand (register or storage location in memory) to the
right by number of bits specified by count. The vacated MSBit locations is filled with the original
MSBit and the last bit shifted out of the LSBit is saved in CF.

Rotate Instructions
Mnemonic Meaning Format Operation Flags affected

ROL Rotate left ROL D, Count

Rotate the (D) left by the number of bit positions equal

to Count. Each bit shifted out from the left most bit goes

back into the right most bit position

CF

(OF undefined if count

≠ 1)

ROR Rotate right ROR D, Count

Rotate the (D) right by the number of bit positions equal

to Count. Each bit shifted out from the right most bit

goes into the left most bit position

CF

(OF undefined if count

≠ 1)

RCL
Rotate left

through carry
RCL D, Count Same as ROL except carry is attached to (D) for rotation

CF

(OF undefined if count

≠ 1)

RCR
Rotate right

through carry
RCR D, Count Same as ROR except carry is attached to (D) for rotation

CF

(OF undefined if count

≠ 1)

Rotate Instructions
The rotate instructions are similar to the shift instructions; they perform many of the same
programming functions such as alignment of data and isolation of a bit of data.

ROL Instruction rotates the destination operand (register or storage location in memory) to the
left by number of bits specified by count. The bits moved out at MSBit are not lost; instead they
are reloaded at the other end.

Rotate Instructions
ROR Instruction rotates the destination operand (register or storage location in memory) to the
right by number of bits specified by count. The bits moved out at LSBit are reloaded at the other
end.

RCL Instruction rotates the destination operand (register or storage location in memory) to the
left through the carry flag by number of bits specified by count. The bits moved out at MSBit are
reloaded at the other end.

Rotate Instructions
RCR Instruction rotates the destination operand (register or storage location in memory) to the
right through the carry flag by number of bits specified by count. The bits moved out at LSBit are
reloaded at the other end.

Flag-Control Instructions
The instruction set includes a group of instructions that, when executed, directly affect the state
of the flags.

Mnemonic Meaning Operation Flags affected

LAHF Load AH from flags (AH) (Flags) None

SAHF Store AH into flags (Flags) (AH) SF, ZF, AF, PF, CF

CLC Clear carry flag (CF) 0 CF

STC Set carry flag (CF) 1 CF

CMC Complement carry flag (CF) (CF) CF

CLI Clear interrupt flag (IF) 0 IF

STI Set interrupt flag (IF) 1 IF

Flag-Control Instructions
LAHF Instruction loads the flags into AH to read them. The format of the flags information in
AH is as shown below (bits 1, 3, and 5) are not used.

AH

SAHF Instruction stores AH into flags to change them, used to start an operation with certain
flags set or reset. The format in AH is same as above.

b7 b6 b5 b4 b3 b2 b1 b0

SF ZF x AF x PF x CF

Flag-Control Instructions
CLC, STC, CMC Instructions used to manipulate the carry flag, they permit CF to be cleared, set,
or complemented, respectively.

CLI, STI Instructions used to manipulate the interrupt flag. CLI instruction clears the interrupt
flag (IF = 0, disables the interrupt interface). STI instruction sets the interrupt flag (IF = 1,
microprocessor is enabled to accept interrupts).

Compare Instruction

Mnemonic Meaning Format Operation Flags affected

CMP Compare CMP D, S
(D) - (S) is used in setting or

resetting the flags
CF, AF, OF, PF,SF, ZF

Jump Instructions
conditional jump instruction set are shown in the table below. Each of these instructions tests for
the presence or absence of certain status conditions. For some of the instructions, two different
mnemonics can be used (this improves the program readability).

Mnemonic Meaning Condition

JA Above CF = 0 and ZF = 0

JAE Above or equal CF = 0

JB Below CF = 1

JBE Below or equal CF = 1 or ZF = 1

JC Carry CF = 1

JCXZ CX register is zero (CF or ZF) = 0

JE Equal ZF = 1

Jump Instructions
Mnemonic Meaning Condition

JG Greater ZF = 0 and SF= OF

JGE Greater or equal SF = OF

JL Less (SF xor OF) = 1

JLE Less or equal ((SF xor OF)or ZF) = 1

JNA Not above CF = 1 or ZF = 1

JNAE Not above nor equal CF = 1

JNB Not below CF = 0

JNBE Not below nor equal CF = 0 and ZF = 0

JNC Not carry CF = 0

JNE Not equal ZF = 0

Jump Instructions
Mnemonic Meaning Condition

JNG Not greater ((SF xor OF)or ZF) = 1

JNGE Not greater nor equal (SF xor OF) = 1

JNL Not less SF = OF

JNLE Not less nor equal ZF = 0 and SF= OF

JNO Not overflow OF = 0

JNP Not parity PF = 0

JNS Not sign SF = 0

JNZ Not zero ZF = 0

JO Overflow OF = 1

JP Parity PF = 1

Jump Instructions
Mnemonic Meaning Condition

JPE Parity even PF = 1

JPO Parity odd PF = 0

JS Sign SF = 1

JZ Zero ZF = 1

Above and below are used to describe the comparison of unsigned numbers; while less and greater to

describe comparison of signed numbers. For example, the number ABCDH is above the number 1234H if

they are considered to be unsigned numbers. On the other hand, ABCDH is less than 1234H if they are

treated as signed numbers.

When signed numbers are compared, use the JG, JL, JGE, JLE, JE, and JNE instructions. When unsigned

numbers are compared, use the JA, JB, JAE, JBE, JE, and JNE instructions.

Subroutines Instructions
A subroutine is a special segment of program that can be called for execution from any point in a
program. The subroutine is written to provide a function that must be performed at various
points in the main program.

Execution Sequencing of a Program That Includes Subroutine Calling

Subroutines Instructions
There are instructions provided to transfer control from the main program to a subroutine and
return control back to the main program.

Mnemonic Meaning Format Operation Flags affected

CALL Subroutine call CALL operand

Execution continues from the address of the subroutine

specified by the operand. Information required to return back

to the main program such as IP and CS are saved to stack.

None

RET Return
RET

or RET operand

Return to the main program by restoring IP (and CS for far-

proc). If operand is present, it is added to the contents of SP.
None

PUSH Push word onto stack PUSH S
((SP)) (S)

(SP) (SP)-2
None

POP Pop word off stack POP D
(D) ((SP))

(SP) (SP)+2
None

PUSHF Push flags onto stack PUSHF
((SP)) (Flags)

(SP) (SP)-2
None

POPF Pop flags off stack POPF
(Flags) ((SP))

(SP) (SP)+2

OF, DF, IF, TF, SF, ZF,

AF, PF, CF

Subroutines Instructions
CALL Instruction provides the mechanism to call a subroutine into operation by modifying
either the value of IP or IP and CS to branch to a subroutine. The operand initiates either an
intrasegment or intersegment call.

Intrasegment call causes the content of IP to be saved on the stack and a new 16-bit value to
be loaded into IP. The operands can be Near-proc, Memptr 16, or Regptr 16.

Near-proc the 16-bit immediate operand is loaded to IP. CALL 1234H

Memptr 16 the content of a memory location (word) specified by the operand is loaded into IP.

CALL [BX]

Regptr 16 the content of a register is loaded into IP. CALL BX

Subroutines Instructions
Intersegment call permits the subroutine to reside in another code segment. The contents of
CS and IP are saved on the stack, and then new values are loaded to them. The operands can be
Far-proc, Memptr 32.

Far-proc a 32-bit immediate operand is loaded into IP and CS. CALL 1234:5678H

Memptr 32 the pointer for the subroutine is stored as four consecutive bytes in data memory.
The first word of memory is loaded into IP; the second word of memory is loaded into CS.

CALL DWORD PTR [DI]

RET Instruction returns control to the main program. It causes the value of IP or both IP and CS
that were saved on the stack to be returned back to their corresponding registers. Program
control is returned to the instruction that immediately follows the call instruction.

Subroutines Instructions
PUSH Instruction used to save parameters on the stack. These data correspond to registers and
memory locations that are used by the subroutine. In this way, their original contents are kept
intact in the stack segment during the execution of the subroutine.

POP Instruction used to retrieve parameters from the stack. Before a return to the main
program takes place, the parameters are restored.

The operands for push and pop instructions can be a general-purpose register, a segment
register (excluding CS), or a storage location in memory.

PUSHF Instruction saves the content of flag register on the top of stack.

POPF Instruction returns the flags from the top of stack to the flag register.

Loops Instructions
The 8086 microprocessor has instructions specifically designed for implementing loop
operations. These instructions can be used in place of certain conditional jump instructions and
give the programmer a simpler way of writing loop sequences.

Mnemonic Meaning Format Operation

LOOP Loop LOOP short-label

(CX) (CX) - 1

Jump is initiated to location defined by short-label if

(CX) ≠ 0; otherwise, execute next sequential instruction

LOOPE/

LOOPZ

Loop while equal/

Loop while zero

LOOPE/ LOOPZ

short-label

(CX) (CX) - 1

Jump to location defined by short-label if (CX) ≠ 0 and

ZF = 1; otherwise, execute next sequential instruction

LOOPNE/

LOOPNZ

Loop while not

equal/ Loop while

not zero

LOOPNE/ LOOPNZ

short-label

(CX) (CX) - 1

Jump to location defined by short-label if (CX) ≠ 0 and

ZF = 0; otherwise, execute next sequential instruction

Strings Instructions
A string is a series of data words (or bytes) that reside in consecutive memory locations. The
string instructions of 8086 permit programmer to implement operations such as to move data
from one block of memory to a block elsewhere in memory, scanning a string of data elements
stored in memory to look for a specific value, comparing the elements of two strings in order to
determine whether they are the same or different, and initializing a group of consecutive
memory locations. These operations must be repeated to handle a string of more than one
element.

Strings Instructions
Mnemonic Meaning Format Operation Flags affected

MOVS Move string MOVSB/ MOVSW

((ES)0+(DI)) ((DS)0+(SI))

(SI) (SI) ± 1 or 2

(DI) (DI) ± 1 or 2

None

CMPS Compare string CMPSB/ CMPSW

Set flags as per

((DS)0+(SI)) - ((ES)0+(DI))

(SI) (SI) ± 1 or 2

(DI) (DI) ± 1 or 2

CF, PF, AF, ZF, SF, OF

SCAS Scan string SCASB/ SCASW

Set flags as per

(AL or AX) - ((ES)0+(DI))

(DI) (DI) ± 1 or 2

CF, PF, AF, ZF, SF, OF

LODS Load string LODSB/ LODSW
(AL or AX) ((DS)0+(SI))

(SI) (SI) ± 1 or 2
None

STOS Store string STOSB/ STOSW
((ES)0+(DI)) (AL or AX)

(DI) (DI) ± 1 or 2
None

CLD Clear DF CLD (DF) 0 DF

STD Set DF STD (DF) 1 DF

Strings Instructions
MOVSB/ MOVSW Instructions an element of the string specified by SI register with respect to
DS is moved to the location specified by DI register with respect to ES. The move can be
performed on a byte or a word of data. After the move is complete, the content of both SI and
DI are automatically incremented or decremented by 1 for a byte move and by two for a word
move. The address pointers in SI and DI increment or decrement depending on how the
direction flag (DF) is set.

CLD Instruction clears DF, this selects auto-increment mode in string operations so that each
time a string operation is performed, SI and/ or DI are incremented by 1 if byte data are
processed and by 2 if word data are processed.

STD Instruction sets DF, this selects auto-decrement mode in string operations so that each
time a string operation is performed, SI and/ or DI are decremented by 1 if byte data are
processed and by 2 if word data are processed.

Strings Instructions
LODSB/ LODSW Instructions LODSB loads a byte from a string in memory into AL. The address
in SI is used relative to DS to determine the address of the memory location of the string
element; SI is incremented or decremented by 1 after loading. LODSW indicates that the word-
string element at physical address derived from DS and SI is to be loaded into AX. Then the index
in SI is automatically incremented or decremented by 2.

STOSB/ STOSW Instructions stores a byte from AL or a word from AX into a string location in
memory. ES and DI are used to form the address of storage location in memory.

