Course Description Form

1. Course Name:

Linear Algebra

2. Course Code:

LALG1337

3. Semester / Year:

2nd Semester

4. Description Preparation Date:

8/2/2024

5. Available Attendance Forms:

Presence

6. Number of Credit Hours (Total) / Number of Units (Total)

2/30

7. Course administrator's name (mention all, if more than one name) Name: Luay Thamir Rasheed

Email: <u>luay.t.rasheed@uotechnology.edu.iq</u>

8. Course Objectives

Course Objectives	The two central problems about which much of the theory of linear algebra				
	revolves are the problems of:				
	• Finding all solutions to a linear system.				
	• Finding eigenvalues and eigenvectors of a system for a square matrix.				
	This course is devoted to teaching the students the mathematical tools of				
	linear algebra that will help them understand and handle many problems in				
	control theory.				
9. Teaching and Learning Strategies					

Strategy	Lectures.	
	• Tutorial.	
	• Quizzes.	
10. Course Structure		

Week	Hours	Required	Unit or subject name		Learning	Evaluation
Learning Outcomes			method		method	
1-2	4		 Introduction to Systems of Linear Equations Gaussian Elimination and Gauss-Jordan 		Lectures + Solve Examples	Discuss and evaluate homework
3-4	4		 Vector Spaces Subspaces of Vector 		Lectures + Solve Examples	Quiz
5-6	4		Spaces1.Spanning Sets andLinear Independence2.Basis and Dimension		Lectures + Solve Examples	Discuss and evaluate homework
7-8	4		 Rank of a Matrix and Systems of Linear Equations Coordinates and Change of Basis 		Lectures + Solve Examples	Discuss evaluate homework
9	2		Applications of Vector Spaces		Lectures + Solve Examples	Quiz
10-12	6		1.EigenvaluesandEigenvectors2. Diagonalization		Lectures + Solve Examples	Discuss and evaluate homework
13-15	6		2. Diagonalization1. Symmetric MatricesandOrthogonalDiagonalization2.ApplicationsofEigenvaluesandEigenvectors		Lectures + Solve Examples	Discuss and evaluate homework
11.	Course Ev	aluation				
5% Qui	cumented zzes orts and ho					
12.	_earning a	and Teaching F	Resources			
Require	d textbooks	(curricular book	s, if any)	Ron Larson and David C. Falvo. Elementary		
				Linear Algebra Harcourt Publis	a. 4th ed. ⊢ shing Company	loughton Mifflin , 2009

Main references (sources)	Strang, Gilbert. Introduction to Linear Algebra.			
	4th ed. Wellesley, MA: Wellesley-Cambridge			
	Press, February 2009.			
Recommended books and references (scientific	Erwin Kreyszig. Advanced Engineer			
journals, reports)	Mathematics. 9th ed. 2006.			
Electronic References, Websites				