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LIMIT CYCLES [1]
Nonlinear systems can display oscillations of fixed amplitude and 
fixed period without external excitation. These oscillations are called 
limit cycles, or self-excited oscillations. 

This important phenomenon can be simply illustrated by a famous 
oscillator dynamics, first studied in the 1920's by the Dutch electrical 
engineer Balthasar Van der Pol.

Limit cycles are unique features of nonlinear systems.

In the phase plane, a limit cycle is defined as an isolated closed curve. 
The trajectory has to be both closed, indicating the periodic nature of 
the motion, and isolated,(isolated in the sense that neighboring 
trajectories are not closed, they are either converging or diverging 
from it)*.

* https://www.sciencedirect.com/topics/engineering/limit-cycle

https://www.sciencedirect.com/topics/engineering/limit-cycle


LIMIT CYCLES [1]

A system oscillates when it has a nontrivial periodic solution 
x(t + T) = x(t), ∀t ≥ 0, for someT > 0.

The word ”nontrivial” is used to exclude the constant solutions.

We have already seen oscillation of linear system with 
eigenvalues ±jβ. 

The origin of the system is a center, and the trajectories are 
closed.

Such oscillation where there is a continuum of closed orbits is 
referred to harmonic oscillator.



LIMIT CYCLE of Van Der Pol equation

Limit Cycle

Mass-Spring System

These are not considered limit 
cycles in this definition, 
because they are not isolated.



Kinds of LIMIT CYCLES [1]

1.Stable Limit Cycles: all trajectories in the vicinity of the limit cycle 
converge to it as

2. Unstable Limit Cycles: all trajectories in the vicinity of the limit 
cycle diverge from it as 

3.Semi-Stable Limit Cycles: some of the trajectories in the vicinity 
converge to it, while the others diverge from it as

t →∞

t →∞

t →∞



Existence of LIMIT CYCLES
Periodic orbits in the plane are special in that they divide the the plane into a region 
inside the orbit and region outside it. 

This makes it possible to obtain a criteria for detecting the existence of periodic 
orbits for second order systems which has no generalization for higher order systems.

The most celebrated criteria are the Poincaré, Poincaré- Bendixon and the Bendixon 
Theorems [1].

Poincaré-Bendixson Theorem [1] If a trajectory of the second-order autonomous 
system remains in a finite region Q, then one of the following is true:

(a) the trajectory goes to an equilibrium point

(b) the trajectory tends to an asymptotically stable limit cycle

(c) the trajectory is itself a limit cycle.

This theorem is concerned with the asymptotic properties of the trajectories of 
second-order systems.



Existence of LIMIT CYCLES

Bendixson Theorem [1] For the nonlinear system               

,no limit cycle can exist in a region Q of the phase plane in 
which

does not vanish and does not change sign.

This theorem provides a sufficient condition for the non-
existence of limit cycles.
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LIMIT CYCLES [1]

Example 2.8 of [1]: Consider the nonlinear system 

since 

which is always strictly positive (except at the origin), the system 
does not have any limit cycles anywhere in the phase plane. 
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Nonlinear Systems Analysis

1. phase Plane  

2. Lyapunov Theory



Nonlinear Systems Analysis
Stability 
Qualitatively,	a	system	is	described	as	stable	if	starting	the	system	
somewhere	near	its	desired	operating	point	implies	that	it	will	stay	around	the	
point	ever	after.	

The	motions	of	a	pendulum	starting	near	its	two	equilibrium	points,	namely,	
the	vertical	up	and	down	positions,	are	frequently	used	to	illustrate	unstable	
and	stable	behavior	of	a	dynamic	system.		

For	aircraft	control	systems,	a	typical	stability	problem	is	intuitively	related	to	
the	following	question:	will	a	trajectory	perturbation	due	to	a	gust	cause	a	
significant	deviation	in	the	later	flight	trajectory?	

	Here,	the	desired	operating	point	of	the	system	is	the	flight	trajectory	in	the	
absence	of	disturbance.	Every	control	system,	whether	linear	or	nonlinear,	
involves	a	stability	problem	which	should	be	carefully	studied.



Stability Definitions

A few simplifying notations are defined at this point. Let BR denote the spherical 

region (or ball) defined by || x || < R in state-space, and SR the sphere itself, defined 
by || x || = R.



Stability Definitions



Stability Definitions

Essentially, stability (also called stability in the 
sense of Lyapunov, or Lyapunov stability) means 
that the system trajectory can be kept 
arbitrarily close to the origin by starting 
sufficiently close to it.

an equilibrium point is unstable if there exists at least 
one ball BR, such that for every r>0, no matter how 
small, it is always possible for the system trajectory to 
start somewhere within the ball Br and eventually leave 
the ball BR. 

Unstable nodes or saddle points in second-order systems 
are examples of unstable equilibria. 

Instability of an equilibrium point is typically 
undesirable, because it often leads the system into limit 
cycles or results in damage to the involved mechanical or 
electrical components.



Stability Analysis [1]
Note that: 

1.An	 equilibrium	 point	 x*=0	 may	 be	 unstable	 even	 though	
trajectories	starting	from	points	close	to	x	=	0	do	not	tend	to	infinity.		

2-The	 qualitative	 difference	 between	 instability	 and	 the	 intuitive	
notion	 of	 "blowing	 up"	 (all	 trajectories	 close	 to	 origin	move	 further	
and	further	away	to	infinity).	In	linear	systems,	instability	is	equivalent	
to	 blowing	 up,	 because	 unstable	 poles	 always	 lead	 to	 exponential	
growth	 of	 the	 system	 states.	 However,	 for	 nonlinear	 systems,	
blowing	up	is	only	one	way	of	instability.		



Stability Analysis [1]
This	 is	 the	 case	 for	Van	der	Pol’s	 equation,	which	 has	an	unstable	
equilibrium	at	 the	origin.	 (All	 trajectories	 starting	 from	points	within	
the	 limit	 cycle	 eventually	 join	 the	 limit	 cycle,	 and	 therefore	 it	 is	 not	
possible	to	find	r>0	 in	Definition	2	whenever	R	 is	small	enough	that	
some	points	on	the	closed	curve	of	the	limit	cycle	lie	outside	the	set	
of	points	x	satisfying																)x < R.



Concepts of stability [1]
Since nonlinear systems may have much more complex and exotic behavior than 

linear systems, the mere notion of stability is not enough to describe the essential 

features of their motion. 

A number of more refined stability concepts, such as asymptotic stability, 

exponential stability and global asymptotic stability, are needed. 

In many engineering applications, Lyapunov stability is not enough.  

For example, when a satellite's attitude is disturbed from its nominal position, we not 

only want the satellite to maintain its attitude in a range determined by the magnitude 

of the disturbance, i.e., Lyapunov stability, but also require that the attitude gradually 

go back to its original value. This type of engineering requirement is captured by the 

concept of asymptotic stability.



Concepts of stability [1]

Asymptotic stability means that the equilibrium is 

stable, and that in addition, states started close to 0 

actually converge to 0 as time t goes to infinity

System trajectories starting from 
within the ball BR converge to the 

origin.



Concepts of stability [1]
The ball BR is called a domain of attraction of the 

equilibrium point. 

 The domain of attraction of the equilibrium point refers to 

the largest such region, i.e., to the set of all points such that 

trajectories initiated at these points eventually converge to 

the origin. 



Concepts of stability [1]

An equilibrium point which is Lyapunov stable but 

not asymptotically stable is called marginally stable. 



State convergence does not imply stability [1]

It it easy to build counter-examples that show that state convergence does 

not necessarily imply stability.  

For instance, a simple system studied by Vinograd has trajectories of the 

form shown in Figure below. 

 All the trajectories starting from non-zero initial points within the unit 

disk first reach the curve C before converging to the origin. Thus, the 

origin is unstable in the sense of Lyapunov, despite the state convergence.



In many engineering applications, it is still not sufficient to know 

that a system will converge to the equilibrium point after infinite 

time.  

There is a need to estimate how fast the system trajectory 

approaches the origin. 

The concept of exponential stability can be used for this purpose.

Concepts of stability [1]

An equilibrium point 0 is exponentially stableif there exist 

two strictly positive numbers α  and λ  such that

∀t > 0,|| x(t) ||≤α || x(0) || e−λt

in some ball B
r
 around the origin.

Definition 4



This means that the state vector of an exponentially 

stable system converges to the origin faster than an 

exponential function. The positive number     is often 

called the rate of exponential convergence. (see 

examples in ref. [1]).

Concepts of stability [1]

λ

An equilibrium point 0 is exponentially stableif there exist 

two strictly positive numbers α  and λ  such that

∀t > 0,|| x(0) ||≤ r ⇒|| x(t) ||≤α || x(0) || e−λt

in some ball B
r
 around the origin.

Definition 4



Lyapunov Stability [2]

Geometric meaning of  stability in the sense of  Lyapunov

Geometric meaning of  asymptotic stability.



Lyapunov Stability [2]

Geometric meaning of  asymptotic stability.

Geometric meaning of  exponential stability.



Note that: 

1.Asymptotic and exponential stability 

are local properties of a dynamic 

system since they only require that the 

state converges to zero from a finite set 

of initial conditions (known as a region 

of attraction): x where              

2. If r can be taken to be infinite, then 

the system is respectively globally 

asymptotically stable or globally 

exponentially stable. 

3.A strictly stable linear system is 

necessarily globally exponentially 

stable.

Global and local stability

x < r.



Note that: 

1.Linear time-invariant systems are either asymptotically stable, or 

marginally stable, or unstable.  

2.linear asymptotic stability is always global and exponential, and linear 

instability always implies exponential blow-up.  

This explains why the refined notions of stability introduced here were not 

previously encountered in the study of linear systems. They are explicitly 

needed only for nonlinear systems.

Global and local stability[1]
If asymptotic (or exponential) stability holds for any initial states, the

equilibrium point is said to be asymptotically (or exponentially) stable in the large. It

is also called globally asymptotically (or exponentially) stable.

Definition 5



 Lyapunov Theory [1]
Basic	Lyapunov	theory	comprises	two	methods	introduced	by	Lyapunov,	the 
indirect method and the direct method. 

The	indirect	method	(linearization	method)	states	that	the	stability	properties	of	a	
nonlinear	system	in	the	close	vicinity	of	an	equilibrium	point	are	essentially	the	
same	as	those	of	its	linearized	approximation.	

This	method	serves	as	the	theoretical	justification	for	using	linear	control	
for	physical	systems,	which	are	always	inherently	nonlinear.	

The	direct	method	is	a	powerful	tool	for	nonlinear	system	analysis,	and	therefore	
the	so-called	Lyapunov	analysis	often	actually	refers	to	the	direct	method.	

The	direct	method	is	a	generalization	of	the	energy	concepts	associated	
with	a	mechanical	system:	the motion of a mechanical system is stable if its total 
mechanical energy decreases all the time.



What is linearization? 

Linearization is the process of replacing 

the nonlinear system model by its linear 

counterpart in a small region about its 

equilibrium point. 

Why do we need it? 

We have well stablished tools to analyze 

and stabilize linear systems.

 Lyapunov Theory 
Indirect method Linearization [3]



 Lyapunov Theory 
Indirect method Linearization [3]

The METHOD 

For the nonlinear autonomous unforced system 

Let us use the constant matrix A to denote the Jacobian 

matrix of f with respect to x at x = 0 

											contains the higher order terms (h.o.t.). 

then the system              is called the linearization (or linear 

approximation) of the original nonlinear system at the equilibrium 

point 0.

!x = f (x)

!x = Ax + g(x), A = ∂ f

∂x
x=0
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Theorem1 (Lyapunov's linearization method) 

 If the linearized system is strictly stable (i.e, if all eigenvalues of A are strictly in the 

left-half complex plane), then the equilibrium point is asymptotically stable (for the 

actual nonlinear system). 

If the linearized system is unstable (i.e, if at least one eigenvalue of A is strictly in the 

right-half complex plane), then the equilibrium point is unstable (for the nonlinear 

system). 

If the linearized system is marginally stable (i.e, all eigenvalues of A are in the left-half 

complex plane, but at least one of them is on the /co axis), then one cannot conclude 

anything from the linear approximation (the equilibrium point may be stable, 

asymptotically stable, or unstable for the nonlinear system). 

A summary of the theorem is that it is true by continuity. If the linearized system is strictly 
stable, or strictly unstable, then, since the approximation is valid “not too far" from the 
equilibrium, the nonlinear system itself is locally stable, or locally unstable. However, if the 
linearized system is marginally stable, the higher-order terms can have a decisive effect on 
whether the nonlinear system is stable or unstable 

 Lyapunov Theory 
Indirect method Linearization [3]



 Lyapunov Theory 
Indirect method [1]



 Lyapunov Theory 
Indirect method Linearization [3]

Advantage:  

Easy to apply 

Disadvantages: 

. If some eigenvalues of are zero, then we 

cannot draw any conclusion about stability 

of the nonlinear system. 

. It is valid only if initial conditions are 

“close”to the equilibrium x*.



 Lyapunov Theory 
Indirect method [1]

Lyapunov's linearization theorem shows that linear 

control design is a matter of consistency: one must 

design a controller such that the system remain in its 

“linear range".  

•It also stresses major limitations of linear design: 

how large is the linear range?  

•What is the extent of stability (how large is r in 

Definition 3) ?  

These questions motivate a deeper approach to the 

nonlinear control problem, Lyapunov’s direct method.



 Lyapunov Theory 
Direct method [1]

The DIRECT method is a powerful tool for nonlinear system analysis, 

and therefore the so-called Lyapunov analysis often actually refers to 

the direct method. 

The	direct	method	is	a	generalization	of	the	energy	concepts	associated	with	a	
mechanical	system:	the motion of a mechanical system is stable if its total mechanical 
energy decreases all the time.

In using the direct method to analyze the stability of a nonlinear system, the idea is to 
construct a scalar energy-like function (a Lyapunov function) for the system, and to 
see whether it decreases. 

The power of this method comes from its generality: it is applicable to all kinds of 
control systems, be they time-varying or time-invariant, finite dimensional or infinite 
dimensional. 

The limitation of the method lies ins the fact that it is often difficult to find a 
Lyapunov function for a given system.



One	important	application	is	the	design	of	nonlinear	
controllers.		

	The idea is to somehow formulate a scalar positive function 
of the system states, and then choose a control law to make 
this function decrease.

A nonlinear control system thus designed will be 
guaranteed to be stable.

Such a design approach has been used to solve many 
complex design problems e.g. in robotics and adaptive 
control.

 Lyapunov Theory 
Direct method [1]



Advantages:	

answers	stability	of	nonlinear	systems	without	
explicitly	solving	dynamic	equations	

can	easily	handle	time	varying	systems	

can	determine	asymptotic	stability	as	well	as	plain	
stability	

can	determine	the	region	of	asymptotic	stability	or	
the	domain	of	attraction	of	an	equilibrium

 Lyapunov Theory 
Direct method [1]

!x = f (x,t)



Disadvantages	of	Lyapunov	based	Approach:	

There	is	no	systematic	way	of	obtaining	
Lyapunov	functions.	

Lyapunov	stability	criterion	provides	only 
sufficient condition	for	stability.

 Lyapunov Theory 
Direct method [1]



Lyapunov's	second	or	direct	METHOD:	Consider	the	nonlinear	system	

x*=(0,0),	Suppose	that	there	exists	a	function,	called	Lyapunov	
function	V(x),	with	the	following	properties:	

	 ( is	 Positive	
definite).	

			1.	If	 	( 	is	Negative	semi-definite)	then	x*	
is	Stable.	

				2.	If	 	( 	is	Negative	definite)	then	
the	origin	x*	is	Asymptotically	Stable.

V(x) = 0 for x = x* and V(x) > 0 for all x ≠ x* V(x)

·V(x) ≤ 0 for all x ·V(x)

·V(x) < 0 for all x ≠ x* ·V(x)

 Lyapunov Theory 
Direct method [3]

!x = f (x),x*is an equilibrium state



 Lyapunov Theory 
Direct method [5,1]

A	function	 	is	negative	definite	if	 	is	positive	definite;	 	is	
positive	semi-definite	if	 	and	 	;	 	is	negative	
semi-definite	if	 	is	positive	semi-definite.	The	prefix	"semi"	is	
used	to	reflect	the	possibility	of	V	being	equal	to	zero	for .

V(x) −V(x) V(x)

V(0) = 0 V(x) ≥ 0 for x ≠ 0 V(x)

−V(x)

x ≠ 0



 Lyapunov Theory 
Direct method [3]

recall the Advantages of direct method: 

answers	stability	of	nonlinear	systems	without	explicitly	solving	dynamic	
equations	

can	determine	asymptotic	stability	as	well	as	plain	stability	

can	determine	the	region	of	asymptotic	stability	or	the	domain	of	
attraction	of	an	equilibrium



 Lyapunov Theory 
Direct method [H. Khalil]

Summary 

Lyapunov’ Theorem: The origin is stable if  there is a 

continuously differentiable positive definite function 

 so that  is negative semi-definite, and it is 

asymptotically stable if   is negative definite.

V(x) ·V(x)
·V(x)



Example-1 [4]: consider the system             

	The	only	equilibrium	point	for	this	system	is	the	origin 𝑥*=(0,0).	

To	investigate	the	stability	of	the	origin	let’s	propose	a	quadratic	Lyapunov	
function	 	where 𝑎	is	a	positive	constant	to	be	determined.		

It	is	clear	that 𝑉	is	positive	definite	on	the	entire	state	space	 .	The	derivative	of	
V	along	the	trajectories	of	the	system	is	given	by	

	

If	we	choose 𝑎=4 then	we	can	eliminate	the	cross	term	 ,	and	the	derivative	
of V becomes	

	

which	is	clearly	a	negative	definite	function	on	the	entire	state	space.	Therefore	
we	conclude	that 𝑥* is	a	globally	asymptotically	stable	equilibrium	point.

·x1 = − x1 + 4x2 , ·x2 = − x1 − x3
2

V = x2
1 + ax2

2

ℝ2

·V = 2x1
·x1 + 2ax2

·x2
·V = − 2x2

1 + (8 − 2a)x1x2 − 2ax4
2

x1x2

·V = − 2x2
1 − 8x4

2

 Lyapunov Theory 



Example-2 [3]: consider the system 

Linearize	this	system	around	its	equilibrium	point,	the	
characteristic	equation	of	the	linearized	system	is		

The	-3	eigenvalue	corresponds	to	the	damping	term	but	notice	
the	existence	of	a	zero	eigenvalue	from	the	lack	of	a	linear	term	
in	the	spring	restoring	force.	The	linearized	version	of	the	system	
cannot	recognize	the	existence	of	a	nonlinear	spring	term	and	it	
fails	to	produce	a	non-zero	characteristic	root	related	to	the	
restoring	force.

 Lyapunov Theory 



Example-2 [3]: continued.. 

Let's	look	at	Lyapunov	based	approach.	

with	equilibrium	x*=(0,0)	Let's	try	for	a	Lyapunov	function

 Lyapunov Theory 

Negative semi definite. It 
follows then that x* is stable.

, ·V(x) ≤ 0



Example-2 [3]: continued..

 Lyapunov Theory 

It follows then that x* is stable but not asymptotically stable because  is 
negative semi-definite. It is not negative definite because  

irrespective of the value of , that is  along all the x1 axis. Therefore we 
can only conclude that the origin x* is stable. [H. Khalil Page.119]

·V(x)
·V(x) = 0 for x2 = 0

x1
·V(x) = 0

, ·V(x) ≤ 0



Example-3[3]: for the system 

Check the stability of the system using lyapunov methods 

Solution:Find	the	equilibrium	of	the	system	by	solving	following	
equations:	

Multiply	the	first	equation	by	x1	the	second	by	x2	and	add	them	
to	get

 Lyapunov Theory 

!x
1
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2
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1
x

2
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2
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1
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1
2x

2
, a,b are const. a ≠ b

−x
2
+ ax

1
x

2
2 = 0

x
1
− bx

1
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1
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2
2(a − b) = 0



Example-3[3]:Continued… 

Solution:	hence	the	equilibrium	point	x*	=(0,0).	

The	linearized	system	is	

The	characteristic	equation	is	

Since	the	characteristic	roots	are	purely	imaginary,	we	can	not	
draw	any	conclusion	on	the	stability	of	the	nonlinear	system.

 Lyapunov Theory 

!x = 0 −1
1 0

⎡

⎣
⎢

⎤

⎦
⎥

x
1

x
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

det( −λ 1
−1 −λ

⎡

⎣
⎢

⎤

⎦
⎥) = λ 2 +1= 0⇒λ = ±i



Example-3[3]:Continued Solution: 

Since	the	characteristic	roots	are	purely	imaginary,	we	can	not	draw	any	
conclusion	on	the	stability	of	the	nonlinear	system.	

Now	we	resort	to	Lyapunov	based	approach.	Choose	the	Lyapunov	
function	V(x)	to	be	the	sum	of	the	kinetic	and	potential	energy	of	the	
linear	system	(this	does	not	work	always!):	

We	see	that	for	all																												Then

 Lyapunov Theory 

V (x) = 1

2
x

1
2 + 1

2
x

2
2

V (x) > 0 ∀x
1
,x

2
.



Example-3 [3]:Continued Solution: 

We	see	that	for	all																																	Then	

Therefore,	we	see	that	

if	a<b		the	system	is	stable	(why?).	

if	a>b	the	system	is	unstable.	

 Lyapunov Theory 

V (x) > 0 ∀x
1
,x

2
.

Exercise: Test the stability around the origin for the system 
 t a k i n g L y a p u n o v c a n d i d a t e f u n c t i o n 

. Is it Asymptotically stable or stable or unstable? 

Ans. (Stable)

·x = y, ·y = − sinx

V(x, y) =
y2

2
+ 1 − cosx
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