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Nonlinear equations, unlike linear ones, cannot in general be solved analytically, and 
therefore a complete understanding of the behavior of a nonlinear system is very 
difficult. 

–Powerful mathematical tools like Laplace and Fourier transforms do not apply to 
nonlinear systems. 

As a result, there are no systematic tools for predicting the behavior of nonlinear 
systems, nor are there systematic procedures for designing nonlinear control systems. 

Serious efforts have been made to develop appropriate theoretical tools for it. Many 
methods of nonlinear control system analysis have been proposed. 

Nonlinear Systems Analysis [1]
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Many	methods	of	nonlinear	control	system	
analysis	have	been	proposed: 

1.Phase	Plane	Analysis 
2.Lyapunov	Theory 
3.Describing	Function 

Nonlinear systems Analysis
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Phase Plane Properties [1]
Phase plane analysis is a graphical method for studying 
second-order systems, which was introduced in the 19th 
century by mathematicians such as Henri Poincaré.

 The basic idea of the method: is to generate, in the phase 

plane, motion trajectories corresponding to various initial 

conditions.

 The goal is to examine the qualitative features of the 

trajectories.

 Information concerning stability and other motion patterns 

of the system can be obtained.
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Phase Plane Properties [1]
I. A graphical method: it allows us to visualize what goes on in 

a nonlinear system starting from various initial conditions, 

without having to solve the nonlinear equations analytically. 

II. It is not restricted to small or smooth nonlinearities, but 

applies equally well to strong nonlinearities and to "hard" 

nonlinearities. 

III. Some practical control systems can indeed be adequately 

approximated as second-order systems, and the phase plane 

method can be used easily for their analysis.
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Phase Plane Disadvantage

 It is restricted to second-order (or first order) 

systems, because the graphical study of higher-

order systems i s computat ional ly and 

geometrically complex.
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CONCEPTS

PHASE PLANE 
ANALYSIS
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Concepts of Phase Plane Analysis
Phase Plane portrait: For the following second order autonomous 

system:

x(0)=xo.

Geometrically, the state space of this system is a plane having x1 and 

x2 as coordinates.

The plane is called state or phase plane.

The curve of the solution x(t) for t≥0 passing by xo is the trajectory or 

orbit of equations (1) & (2). 

A family of those trajectories (different xo) is called the phase portrait. 
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Concepts of Phase Plane Analysis [5]
See for example

     Phase plane

It is a phase plane having          as their coordinates.

As time varies                change in the state of the system in         plane 

by the motion of the point.

x, !x

x − !xt = 0→∞
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Concepts of Phase Plane Analysis [1]

A trajectory gives only the Qualitative but not the 

Quantitative behavior of the associated solution.

For Example a closed trajectory shows that there is a 

periodic solution, and thus the system has sustained 

oscillations. Whereas, a shrinking spiral shows a decaying 

oscillation.
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Singular Points [1]
A singular point is an equilibrium point in the phase plane. 

Since an equilibrium point is defined as a point where the system states 

can stay forever, this implies that          and using equations (1) and (2):

The values of the equilibrium can be solved from (3).

For a linear system, there is usually only one singular point (in some 

cases there can be a continuous set of singular points, as in the system

                for which all the points on the real axis are singular points). 

However, a nonlinear system often has more than one isolated singular 

point.
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Phase line of a First Order System
Example 1 [*]:                                          a is a constant,               . 

Determine the stability of the system analytically and then graphically. 

Analytically: 

The solution of the ODE is                                             is the initial condition. 

To find the equilibrium point  

Case 1: if a<0 and                 then the solution                               is exponential decay 

and     the equilibrium is stable. 

Case 2:  if a>0 and                 then the solution                               is exponential 

growth and     the equilibrium is unstable. 

lim
t→∞

x(t) = xe

lim
t→∞

x(t) = ∞

·x = f(x) , f(x) = ax a ≠ 0

x(t) = xoeat, xo

f(xe) = 0 ⟹ xe = 0

xo ≠ 0, x(t) = xoeat

xo ≠ 0, x(t) = xoeat

[*]: Nykamp	DQ,	“The	stability	of	equilibria	of	a	differential	equation.”	From Math	Insight. http://mathinsight.org/
stability_equilibria_differential_equation
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Example 1 [*]:                            
Graphically: 

the system has only one state (first order): 

Case 1: if a<0  

Case 2: if a>0  

·x = ax, a ≠ 0.

xe = 0

xo < 0 xo > 0

xe = 0
−∞

xo < 0 xo > 0

−∞ ∞

∞

Phase diagram (LINE)
Arrows pointing towards an equilibrium solution from both sides on a phase line indicate that 

equilibrium solution is asymptotically stable. Arrows pointing away from an equilibrium solution 

from both sides on a phase line indicate that equilibrium solution is unstable.

Phase line of a First Order System
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Phase Plane of a Second Order System [1]
Example 1: Draw the Phase portrait 

of the following mass-spring system. 

Sol. let x1=x 

The solution of the above equation is 

c1 and c2 are constants. Assume that the mass is initially at rest                  , at 

length  

!!x + x = 0

x
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cost + c

2
sin t , x

2
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sin t + c

2
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!x(0) = 0 x(0)

x
1
(0) = c

1
cos(0)+ c

2
sin(0)⇒ x

1
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1
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(t) = x
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PROVE!
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Example 1: Continued 

Sol. 

Then the solution of the above equation is 

eliminating the time from the above equations yields the equation of trajectories 

which is the equation of a circle centered at the origin and of radius xo. 

Before plotting the phase portrait, locate the equilibrium point which is (0,0). 

Now drawing equation (*) from different values of               will result in the phase 

portrait of the mass-spring system.

x
1
(t) = x

1
(0)cost

x
2
(t) = −x

1
(0)sin t

x
1
2 + x

2
2 = x

1
(0)2 (*) PROVE!

x
1
(0)

Phase Plane of a Second Order System [1]
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Example 1: End 

locate the equilibrium point which is (0,0). 

Now drawing equation (*) from different values of                          will result in the 

following phase portrait of the mass-spring system. 

                                                                       

                                                                     *The system is undamped, its eigenvalues: 

x
1
(0),x

2
(0)

HOMEWORK: DRAW THE PHASE 
PORTRAIT OF THIS EX. USING 
XO=(1,1),(-2,1), (-3,-2). 
WHAT HAPPENS IF XO=(0,0)?

x
1

x
1

λ
1,2
= ±i

BUT 
HOW TO FIND THE MOTION 

DIRECTION???

Phase Plane of a Second Order System [1]
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Today, phase portraits are routinely computer-generated. In fact, the 
associated ease of quickly generating phase portraits allowed many 
advances in the study of complex nonlinear dynamic behaviors such as 
chaos. 

It is still practically useful to learn how to roughly sketch phase portraits 
or quickly verify the plausibility of computer outputs (just like in the case 
of root locus for linear systems). 

 We will use phase portrait to study the behavior of the system near 
equilibrium (singular) points.

Drawing Phase Portrait [1]
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They are number of methods to draw the phase trajectories for linear and nonlinear 

systems. Here we will discuss two: the Analytical method and the Graphical method. 

 The analytical method involves the analytical solution of the differential 

equations describing the systems.  

It is based on  eliminating the time variable either after solving for x1(t) an x2(t) 

or by solving . Both techniques lead to a functional relation between 

the two phase variables X1 and x2 to generate the phase portrait. 

This method can be applied when the differential equation is relatively simple to 

solve. It is useful for linear and some special nonlinear systems, particularly 

piece-wise linear systems, whose phase portraits can be constructed by piecing 

together the phase portraits of the related linear systems (see ex. 2.5 in [1]).

dx2

dx1
=

f2(x)
f1(x)  

Drawing methods [1]
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The graphical method is used to construct the phase trajectories indirectly. 

There are many graphical methods to sketch the phase portrait. 

One widely used method is the method of isoclines (will be shown 

later). 

Another simple method is to construct trajectories from the vector field 

diagram [4]. 

The vector field at a point is tangent to the trajectory through that 

point.

Drawing methods:Graphical [1,4]
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Phase Portrait: Vector field [4]
Rewrite the autonomous system in (1),(2) as: 

where f(x) is the vector (f1(x),f2(x)). 

Consider f(x) as the vector field in the state plane: at each point 

in the plane x we assign vector f(x). (    a point,    velocity vector 

at that point)

 We can also visualize the vector as a directed line 

segment from any initial point P1 to a final point P2. Then, 

the vector from x=P1 to x=P2 is given by: 

Here our vector is 

!x = f (x) (3)

V = P
2
− P

1

V = f (x) = P
2
− P

1

!xx
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Here our vector is  

We represent             as a vector based at x=P1, i. e. we 

assign to      the directed line segment 

P2 = x + f(x), x = P1 ⟹ P2 = P1 + f(P1) .

Concepts of Phase Plane Analysis [4]

!x = f (x) = P
2
− P

1

f (x)
x
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Example 2:  For                                                      use phase diagram to analyze 

its stability. 

Consider the rate of change f(x) we notice that it is increasing whenever  

Sol. The equilibrium point(s) are found as follows:  

x2 > 4

·x = f(xe) = 0

·x = f(x) , f(x) = − 4 + x2

x2
e − 4 = 0 ⟹ xe1

= − 2, xe2
= 2

Phase line of First Order Systems

24



Example 2:  For                                                      use phase diagram to analyze 

its stability. 

Sol. stability be examined by drawing the vector diagram from a point x=P1:                                         

choose few points around equilibrium points: 

·x = f(x) , f(x) = − 4 + x2

P2 = P1 + f(P1)

P1 = 1 ⟹ P2 = 1 + f(1) = 1 − 3 = − 2

P5 = − 3 ⟹ P6 = − 3 + f(−3) = − 3 + 5 = 2

xe2 = 2

xo < − 2 x > 2
−∞ ∞

PHASE LINE

xe1 = − 2

P3 = 4 ⟹ P4 = 4 + 12 = 16

STABLE NODE UNSTABLE 
NODE

Phase line of First Order Systems
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Example 

To draw the vector at x=(1,1): 

 we draw an arrow pointing from P1=x=(1,1) to  

P2= P1+(f1(P1),f2(P1)) =(1,1)+(2,1)=(3,2).  

Repeating this for every point we obtain a vector field diagram 

(see page 36-37 of [4]).

Vector field for second order system [4]
·x = f(x) = ( f1(x), f2(x)) = (2x2

1 , x2)
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Graphical phase portrait for second order systems [4 P36-37]

The length of the arrow at a 

given point is proportional to 

t h e l e n g t h o f

.

For convenience, we draw 

arrows of equal length at all 

points.

The vector field at a point is 

tangent to the trajectory through 

that point.

f(x) i . e . f 2
1(x) + f 2

2(x)

27



We can, in essence, construct trajectories 

from the vector field diagram.

Starting a trajectory from , 

it moves along the vector field at . This 

will lead us to a new point . 

We continue the trajectory along the 

vector field at .

If this process is repeated carefully and 

consecutive points are chosen close to 

each other, we can obtain a reasonable 

approximation of the trajectory through 

xo.

xo = (x1(0), x2(0))

xo

xa

xa

Graphical phase portrait for second order systems [4 P36-37]

a closed trajectory indicates periodic solution.
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 Phase plane trajectories follow the direction field. The velocity vector 

for a solution at a point (x1, x2) in the plane is f1(x1,x2), f2(x1,x2) . 

The direction of the trajectory is the direction of this vector. 

An approximate picture of the phase portrait can be constructed by 

plotting trajectories from a large number of initial states spread all 

over the state plane. 

The curves f1(x1,x2)=0 and f2(x1,x2)=0 are the nullclines on which 

the direction of a trajectory is vertical and horizontal respectively.  

The intersection points of the nullclines represent the equilibrium 

points.

Drawing Phase Portrait [6]
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Phase plane portrait can be easily constructed using computer 

simulations. 

Since the time t is eliminated in a trajectory, it is not possible to 

rebuild the solution (x1(t), x2(t)) associated with a given trajectory. 

Therefore, a trajectory provides a qualitative but not quantitative 

behavior for the associated solution. 

For example, a closed trajectory indicates periodic solution, i.e. 

sustained oscillation while a shrinking spiral indicates a decaying 

solution.

Phase Portrait [4, 6]
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LINEAR 
AUTONOMO
US SYSTEMS

PHASE PLANE 
ANALYSIS FOR
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 The phase portrait provides important information about system stability 

throughout the behavior around each equilibrium point. 

we’ll describe the phase plane analysis of linear systems because nonlinear 

systems behave similarly to a linear system around equilibrium points. 

A nonlinear system near an equilibrium point can take one of the patterns 

of linear systems. 

Correspondingly the equilibrium points are classified as stable node, 

unstable node, saddle, stable focus, unstable focus, or center. 

In general, qualitative behavior of a nonlinear system near an equilibrium 

point can be determined via linearization around that equilibrium point.

Phase Plane of Linear Systems [4]
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We will classify the type and stability of the equilibrium solution of a given 

linear system by the shape formed by the trajectories about each critical point. 

We will simply consider the second-order linear system described by 

 

  are the eigenvectors associated to the eigenvalues   respectively. 

To obtain the phase portrait of this linear system, we first solve for the time 

history x(t), e.g.: 

           are constants (scalars), .

·x = Ax

v1, v2 λ1, λ2

x(t) = [x1(t)
x2(t)]

Phase Plane of Linear Systems [1]

x(t) = c1eλ1tv1 + c2eλ2tv2 for λ1 ≠ λ2

c1, c2
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Phase Plane of Linear Systems [1]

 The following cases of system (nonzero) eigenvalues can occur

34



Given x′ = Ax, where there is only one critical point, at (0,0): 

CASE 1: Real Distinct eigenvalues 

When  are both positive, or are both negative 

The trajectories that are the eigenvectors move in straight lines.  

The rest of the trajectories would bend toward the direction of the eigenvector of 

the eigenvalue with the larger value. 

 The trajectories either move away from the singular point to infinite-distant 

away (when  are both positive).  

Or move toward from infinite-distant and converge to the equilibrium point 

(when  are both negative).  

This type of critical point is called a node. It is asymptotically stable if the 

eigenvalues are both negative, unstable if  both are positive.

λ1, λ2

λ1, λ2

λ1, λ2

Phase Plane of Linear Systems [9]

x(t) = C1eλ1tv1 + C2eλ2tv2 for λ1 ≠ λ2
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Phase Portrait of Linear Systems [1]
The trajectories that are the eigenvectors move in straight lines toward the 

equilibrium or away from it depending on the signs of the eigenvalues.
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Phase Portrait of Linear Systems [1]
Example: 

Equilibrium stability: Stable node

·x1 = − 2x1
·x2 = x1 − 4x2

x2

x1
37



Given x′ = Ax, where there is only one critical point, at (0,0): 

CASE 1: Real Distinct eigenvalues 

When  have opposite signs 

the trajectories given by the eigenvectors of the negative eigenvalue initially start 

at infinite-distant away, move toward and eventually converge at the critical 

point.  

The trajectories that represent the eigenvectors of the positive eigenvalue move in 

exactly the opposite way: start near the critical point then diverge to infinite-

distant out.  

Every other trajectory starts at infinite-distant away, moves toward but never 

converges to the critical point, before changing direction and moves back to 

infinite-distant away. 

 This type of critical point is called a saddle point. It is always unstable.

λ1, λ2

Phase Plane of Linear Systems [9]

x(t) = C1eλ1tv1 + C2eλ2tv2 for λ1 ≠ λ2
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Phase Portrait of Linear Systems [1]
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Given x′ = Ax, where there is only one critical point, at (0,0): 

CASE 2: Real repeated eigenvalues     

If the matrix A is a multiple of the Identity matrix then there are two linearly independent 
eigenvectors  
                                          is any nonzero constant, 

Every nonzero solution traces a straight-line trajectory, in the direction 

given by the vector C1 v1 + C2 v2. The phase portrait thus has a distinct 

star-burst shape. 

the equilibrium point is a proper node or star node. 
Stability: It is unstable if the eigenvalue is positive; asymptotically 

stable if the eigenvalue is negative.

λ1 = λ2 = λ ∈ ℝ

Phase Plane of Linear Systems [9]

x(t) = eλt(C1v1 + C2v2)A = α [1 0
0 1], α

PROVE 
IT
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Given x′ = Ax, where there is only one critical point, at (0,0): 

CASE 2: Real repeated eigenvalues, ,   

If the eigenvalues are real and repeated, then the critical point is either a star 
or it is an improper node.  
If the matrix A is not a multiple of the Identity matrix and there is one linearly 
independent eigenvector : 

In this case of improper node, trajectories are tangential to the sole 
eigenvector. 
It is asymptotically unstable if   , stable if .

λ1 = λ2 = λ ∈ ℝ A ≠ α [1 0
0 1]

v1

λ > 0 λ < 0

Phase Plane of Linear Systems [9]

x(t) = C1eλtv1 + C2eλt(tv1 + v2)
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Phase Portrait of Linear Systems [8]
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Given x′ = Ax, where there is only one critical point, at (0,0): 

CASE 3: Complex conjugate eigenvalues, 

Phase Plane of Linear Systems [9]

If the eigenvalues are non-real of the form                         the critical point is either 

a spiral point or a center point. 

If               , the critical point is an unstable focus (spiral) point. 

If                , the critical point is an asymptotically stable focus (spiral) point. 

If                , the critical point is a center and sometimes it is referred to as neutrally 

stable. 

α > 0

α < 0

α = 0

λ
1,2

=α ± βi

λ1,2 ∈ ℂ
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Phase Portrait of Linear Systems [8]
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Phase Portrait of Linear Systems [7]

!x
1
= x

2

!x
2
= −ax

2
,a > 0
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Phase Portrait of Linear Systems [7]

!x
1
= x

2

!x
2
= −ax

2
,a < 0

!x
1
= x

2

!x
2
= 0
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Stability in summary 

As t increases    , if all (or almost all) trajectories 

 converge to the critical point → asymptotically stable, 

move away from the critical point to infinitely far away → 

unstable, 

stay in a fixed orbit within a finite (i.e., bounded) range of 

distance away from the critical point → stable (or neutrally 

stable).

t → ∞

Phase Plane of Linear Systems [9]
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Phase Plane Analysis of Linear systems
Example 2: Draw the Phase portrait of the following system. 

Sol. 

The equilibrium point is found as follows                                                   

The eigenvalues and eigenvectors are 

The equilibrium point is unstable node. 

Draw in phase plane the eigenvectors. 

!x = Ax, A = −1 4
−2 5

⎛

⎝⎜
⎞

⎠⎟

λ
1
= 1,

!
v

1
= 2

1

⎛

⎝⎜
⎞

⎠⎟
,λ

2
= 3,
!
v

2
= 1

1

⎛

⎝⎜
⎞

⎠⎟

!x
1
= −x

1
+ 4x

2

!x
2
= −2x

1
+5x

2

!x = Ax = 0⇒ x
eq
= (0,0),

REMINDER: TO FIND THE EIGENVECTOR FOR THE ABOVE SYSTEM USE (λiI − A) ⃗vi = ⃗0

x2 = 0.5x1
x2 = x1
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Concepts of Phase Plane Analysis
Example 2: 

Draw the eigenvectors v1 and v2.  

Choose few points like x1=2, X2=1   or  P1=(2,1) and draw the resulting vector: 

Thus the vector based at (2,1) is pointing to (4,2)  .. is it logical?? why?? 

!x = Ax, A = −1 4
−2 5

⎛

⎝⎜
⎞

⎠⎟

P
2
= P

1
+ f (x) = P

1
+ Ax

P
2
= 2

1

⎛

⎝⎜
⎞

⎠⎟
+ −1 4

−2 5

⎛

⎝⎜
⎞

⎠⎟
2
1

⎛

⎝⎜
⎞

⎠⎟
= 4

2

⎛

⎝⎜
⎞

⎠⎟

λ
1
= 1,

!
v

1
= 2

1

⎛

⎝⎜
⎞

⎠⎟
,λ

2
= 3,
!
v

2
= 1

1

⎛

⎝⎜
⎞

⎠⎟
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Phase Plane Analysis of Linear systems
Example 2: 

x=P3=(1,1) and draw the resulting vector: 

Thus the vector based at (1,1) is pointing to (4,4)  .. why?? 

Choose a point not on the eigen vectors like P5=(4,1)   

!x = Ax, A = −1 4
−2 5

⎛

⎝⎜
⎞

⎠⎟

P
4
= P

3
+ Ax = 1

1

⎛

⎝⎜
⎞

⎠⎟
+ −1 4

−2 5

⎛

⎝⎜
⎞

⎠⎟
1
1

⎛

⎝⎜
⎞

⎠⎟
= 4

4

⎛

⎝⎜
⎞

⎠⎟

P
6
= P

5
+ Ax = 4

1

⎛

⎝⎜
⎞

⎠⎟
+ −1 4

−2 5

⎛

⎝⎜
⎞

⎠⎟
4
1

⎛

⎝⎜
⎞

⎠⎟
= 4

−2

⎛

⎝⎜
⎞

⎠⎟
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Concepts of Phase Plane Analysis
Example 2: 

Now see what happens from the result P6=(4,-2) 

Notice that the vector field is directed toward the eigen vector v2 of 

This is because as                         

                      for                              

  

!x = Ax, A = −1 4
−2 5

⎛

⎝⎜
⎞

⎠⎟

P
7
= 4

−2

⎛

⎝⎜
⎞

⎠⎟
+ −1 4

−2 5

⎛

⎝⎜
⎞

⎠⎟
4
−2

⎛

⎝⎜
⎞

⎠⎟
= −8

−20

⎛

⎝⎜
⎞

⎠⎟

λ
2
= 3

et < e3t t →∞

x(t) = C
1
etv

1
+C

2
e3tv

2
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Phase Plane Analysis of Linear systems
Example 2: 

Equilibrium: 

Unstable Node 

Note the the vector 

 field starts parallel 

to V1 and ends 

parallel 

to V2 . 

 

!x = Ax, A = −1 4
−2 5

⎛

⎝⎜
⎞

⎠⎟

V1

V2
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Concepts of Phase Plane Analysis
Example 3: Draw the Phase portrait 

of the following system. 

Sol. 
1.The equilibrium point is                                                

2.The eigenvalues and eigenvectors are 

3.The equilibrium point is a stable node. 

4.Draw the eigenvectors and nullclines on the phase plane. 

5.Now, take few points on the eigenvectors above and below each and check the 

direction.

!x = −3 0
3 −2

⎛

⎝⎜
⎞

⎠⎟
x

λ
1
= −2,

!
v

1
= 0

1

⎛

⎝⎜
⎞

⎠⎟
,λ

2
= −3,

!
v

2
= 1

−3

⎛

⎝⎜
⎞

⎠⎟

x
eq
= (0,0)

x1 = 0
x2 = − 3x1
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Phase Plane Analysis of Linear systems
Example 3: 

The nullclines are:  

Choose few points like x1=-2, X2=0   

Take on the second nullcline x=(-1,-1.5): 

P
2
= P

1
+ Ax

P
2
= −2

0

⎛

⎝⎜
⎞

⎠⎟
+ −3 0

3 −2

⎛

⎝⎜
⎞

⎠⎟
−2
0

⎛

⎝⎜
⎞

⎠⎟
= 4

−6

⎛

⎝⎜
⎞

⎠⎟

!x = −3 0
3 −2

⎛

⎝⎜
⎞

⎠⎟
x

1)x
1
= 0, 2)x

2
= 3

2
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Concepts of Phase Plane Analysis
Example 3: 

Now see what happens from the result P6=(4,-2) 

Notice that the vector field is directed toward the eigenvector v1 of 

This is because v1 is associated to the slowest eigenvalue                 why? 

See section 2.1 of [4] for details.                                                      
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Phase Plane Analysis of Linear systems
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Phase Plane Analysis of Linear systems
                                                 

Note that the vector 

 field starts parallel 

to V1 and ends parallel 

to V2 . 
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Phase Plane Analysis of Linear systems
Example 3: Draw the Phase portrait 

of the following system. 

Sol. 

1.The equilibrium point is                                                

2.The eigenvalues and eigenvectors are 

3.The equilibrium point is a Saddle node. 

4.Draw the eigenvectors and nullclines on the phase plane. 

5.Now, take few points on the eigenvectors above and below each and check the 

direction.
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Concepts of Phase Plane Analysis
Example 3:
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Phase Plane Analysis of Linear systems
Example 3:
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Concepts of Phase Plane Analysis
Example 4: Draw the Phase portrait 

of the following system. 

Sol. 

1.The equilibrium point is                                                

2.The eigenvalues and eigenvectors are 

3.The equilibrium point is a Stable node. 

4.Draw the eigenvector and nullclines on the phase plane. 

5.Now, take few points on the eigenvectors above and below each and check the 

direction.
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Phase Plane Analysis of Linear systems
Example 4: 
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HOME WORKS

• Draw phase portrait of the following systems: 

1.                                        2.                                     3. 

2.Diagonalize (put in Jordan form) the following system matrices (if possible) and draw 
the phase portrait for the original and uncoupled system (see section 2.1 of [4]): 

4.Prove that for a system having  the solution vector 
, for  the resulting trajectory will be on the 

eigenvector . 

5.Prove graphically that in the phase plane for   if the initial point xo is 
on any of the eigenvectors, the resulting trajectory remains on that eigenvector. 

 

x(t) = c1eλ1tv1 + c2eλ2tv2 for λ1 ≠ λ2 c1 = 0
v2

!x = −3 0
3 −2

⎛

⎝⎜
⎞

⎠⎟
x

!x = −10 0
0 −10

⎛

⎝⎜
⎞

⎠⎟
x !x = −2 3

−3 −2

⎛

⎝⎜
⎞

⎠⎟
x !x = 2 3

−3 −2

⎛

⎝⎜
⎞

⎠⎟
x

!x = −1 3
0 2

⎛

⎝⎜
⎞

⎠⎟
x, !x = 1 3

0 2

⎛

⎝⎜
⎞

⎠⎟
x

63



Why an Equilibrium point is called Singular Point ?[1]

To answer this, let us examine the slope of the phase trajectories.

The slope of the phase trajectory passing through a point (x1,x2) is 

determined by

With the functions f1 and f2 assumed to be single valued, there is 

usually a definite value for this slope at any given point in phase plane. 

This implies that the phase trajectories will not intersect.

At singular points, however, the value of the slope is 0/0, i.e., the slope is 

indeterminate. Many trajectories may intersect at such points.

This indeterminacy of the slope accounts for the adjective “singular".
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