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Nonlinear Systems Analysis [1]

Nonlinear equationg, unlike linear ones, cannot in general be solved analytically, and

therefore a complete understanding of the behavior of a nonlinear system is very
difficult.

—Powerful mathematical tools like Laplace and Fourier transforms do not apply to
nonlinear systems.

As a result, there are no systematic tools for predicting the behavior of nonlinear
systems, nor are there systematic procedures for designing nonlinear control systems.

Serious efforts have been made to develop appropriate theoretical tools for it. Many
methods of nonlinear control system analysis have been proposed.




Nonlinear systemsAnalysis

Many methods of nonlinear control system
analysis have been proposed:

1.Phase Plane Analysis
2.Lyapunov Theory
3.Describing Function
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Phase Plane Properties [1]

Phase plane analysis is a grapbical method for studying

second-order systems, which was introduced in the 19th

century by mathematicians such as Henri Poincaré.

& The basic idea of the method: is to generate, in the phase

plane, motion trajectories corresponding to various initial

conditions.

& The goal is to examine the qualitative features of the

trajectories.

& Information concerning stability and other motion patterns

of the system can be obtained.




Phase Plane Properties [1]

I. A graphical method: it allows us to visualize what goes on in
a nonlinear system starting {from various initial conditions,

without having to Jsolve the nonlinear equations analytically.

I1. It is not restricted to small or smooth nonlinearities, but
applies equally well to strong nonlinearities and to "hard"

nonlinearities.

II1. Some practical control systems can indeed be adequately

approximated as second-order systemds, and the phase plane

method can be used easily for their analysis.




Phase Plane @isac[mnmge

& It is restricted to second-order (or first order)
systems, because the graphical study of higher-
order systems 1is computationally and

geometrically complex.
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Concejots of Phase Plane ﬂna@sig

Phase Plane portrait: For the following second order autonomous

%, (t) = 1,(X,%,) (1)

system:

@-toi=s X, (1) = 1,(x, %) (2)

® Geometrically, the state space of this system is a plane having x and

X, as coordinates.

@The plane is called state or phase plane.

@The curve of the solution x(t) for t=0 passing by xo is the trajectory or
orbit of equations (1) & (2).

@A family of those trajectories (different xo) is called the phavse portrait.
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Concqots of Phase Plane ﬂna[ysis [5]

See for example

Phase plane

It is a phase plane having X, X as their coordinates.

As time varies t =0— - change in the state of the system in x— x plane

by the motion of the point.




Cowncepts of Phase Plane Analysts [1]

@A trajectory gives only the Qualitative but not the

Quantitative behavior of the associated solution.

@®For Example a closed trajectory shows that there is a
periodic solution, and thus the system has sustained
oscillations. Whereas, a shrinking spiral shows a decaying

oscillation.




Singular Points [1]

@A singular point is an equilibrium point in the phase plane.

®Since an equilibrium point is defined as a point where the system states

can stay forever, this implies that x = Qand using equations (1) and (2):
L06%)=0,1,(x,%,) =0 (3)
@®The values of the equilibrium can be solved from (3).

@For a linear system, there is usually only one singular point (in some

cases there can be a continuous set of singular points, as in the system

X+ X=0 for which all the points on the real axis are singular points).

@®However, a nonlinear system often has more than one isolated singular

point.




Phase line @C a ‘First Order Sysuzm
[WI,&(@//Y' 56=f(X),f(x)=ax a Is a constant, a;éO .

Determine the stability of the system analytically and then graphically.

Ana L@tica LLy:

’ I 4 e at ’ ’ ’ ’ ’ ’
The solution of the ODE Ls X(t) = X561 Xy is the tnitial condition.

To find the equilibrivum point f(Xe) == = X, = 0

, , e L, ,
¥ case1: Lf a<o and X, * 0, thew the solution X(t) = X0€a Ls exponential decay

and lim x(7) = x, the equiltbrivm is stable.

=0

¥ case2: ifa>o0 and X, Z 0,then the solution  X(F) = er“’ Ls exponential

growth and 1im x(7) = co  the equiltbrium is unstable.

[— o0

[*]: Nykamp DQ, “The stability of equilibria of a differential equation.” From Math Insight. http://mathinsight.org/
stability_equilibria_differential _equation



http://mathinsight.org/stability_equilibria_differential_equation
http://mathinsight.org/stability_equilibria_differential_equation
http://mathinsight.org/stability_equilibria_differential_equation
http://mathinsight.org/stability_equilibria_differential_equation

Phase line of a ‘First Order Systzm

Example ! [T X = ax,a F 0.

qmphlcauﬂz

the system has only one state (first order):

x. <0 x. >0

: 0 0
case 1: tf a<o el O & . A E—— ;O
x = 0

e

case2: if a>o0

& Arrows pointing towards an equilibrium solution from both sides on a phase line indicate that

equilibrium solution is asymptotically stable. Arrows pointing away from an equilibrium solution

from both sides on a phase line indicate that equilibrium solution is unstable.
14




Phase Plane @C a Second Order System [1]
Example I Oraw the Phade potbeail

The solution of the above equation is

PROVE!

(t)=c cost+c sgnt |, (t)=—c sint + ¢, cost
A 1 2 % 1 2

c1 andl c2 are constants. Assume that the mass is initially at rest X(0) =0 , at x(0)

Length
X,(0) = ¢,co8(0) + ¢, 9n(0) = x,(0) = ¢, = X (t) = x (0) cost
X,(0)=-c,9n(0)+c,cos0)=0=c,=0= x (t) = —x (0)snt




Phase Plane @C a Second Order System [1]

Example [ Conlinued
Sot.

Thew the solution of the above equation Ls

X, (t) = X, (0) cost
X, (t) =—x(0)sint

elimeinating the time from the above equations yields the equation of trajectories

2

M

X,” = %,(0)°

(*)

PROVE!

which is the equation of a circle centered at the origin and of radius xo.

Before plotting the phase portrait, Locate the equilibrivm point which is (0,0).

Now drawing equation (*) from different values of X (0) will result in the phase

portrait of the mass-spring system.




Phase Plane of a Second Order System [1]
Exampte I End

Locate the equilitbrium point which s (0,0).

Now drawing equation (*) from different values of Xl(O), XZ(O) will result Lin the

following phase portrait of the mass-spring system.

*The system is undamped, Lts eigenvalues:

A

1,2

HOMEWORK: PRAW THE PHASE
| PORTRAIT OF THIS EX. USING

Xo=(1,1),{(21); (=, 2).

WHAT HAPPENS IF XO=(0,0)?
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™ Today,

Drawing Phase Portrait [1]

phage portraits are routinely computer-generated. [n fact, the

associated eage of quickly generating phage portraite allowed many

advanceg
chaoa.

A+ ic ofi

or quickly

in the study of complex nonlinear dynamic behaviors such ag

[ practically useful to learn how to roughly sketch phage portraite
verify the plaugibility of computer outpute (just like in the cage

of root locug for linear eystema).

M We wi

I uge phage portrait to study the behavior of the gystem near

equilibrium (gingular) pointe.




Drawing methods [1]

They are number of wmethods to draw the phase trajectories for Linear and nonlinear

systems. Here we will discuss two: the AwaLgtLoaL methoo and the graphical method.

¥ The analytical wethod involves the analytical solution of the differential

equations deseribing the systems.

2t Ls based on eliminating the time variable either after solving for x1 () an x2(t)

dx,  f,(x)

or by solving —— = . Both techniques Lead to a functional relation between

dx; | | Hi(x)

the two phase variables X1 and x2 to generate the phase portrait.

2This wmethoo can be applied when the differential equation is reLa’c'LveLg stmple to

solve. it ts useful for Linear and some spectal nonlinear systems, particularly
piece-wise Linear systems, whose phase portraits can be constructed by piecing

together the phase portraits of the related linear systems (see ex. 2.5 in [1]).




Drawing methods:Graphical [1,4]

The graphical method is used to construct the phase trajectories indirectly.

There are many graphical methods to sketch the phase portrait.

Fowne widely used wmethod is the method of tsoclines (will be shown

Later).

FAnother simple method is to comstruct trajectories from the vector field

diagram [4].

BThe vector field at a point is tangent to the trajectory through that

po'u/\,t.




Phase Portrait: Vector ﬁ’efcf [4]

Rewrite the autonomous system i (1), (2) as:

x= 1(x) 3
@®where f(x) is the vector (f1(x),f2(x)).

®Consider f(x) as the vector field in the state plane: at each point

in the plane x we assign vector f(x). ( Xa point,X velocity vector

at that point)

® We can also visualize the vector as a directed line ——

segment from any initial point P1 to a final point P2. Then,

the vector from x=P1 to x=P2 is given by: V’: RS

®Here our vectoris \ — f (= P=R
22



Concepts of Phase Plane ﬂna@sis [4]
@Here our vector is

x=f(x)=P,-P

®We represent f(X) as a vector based at x=P1, i. e. we

assign to X the directed line segment

Py=x+fx),x =P = P, =P;+f(P).




Phase [ine of First Order Systzms

[Wi,a@ 2: For X =f(x) ,f(x) = — 4 + x2 use phase diagram to analyze

Lts sta b'LL'Ltg.
Cownstder the rate of change £(x) we notice that it is tnereasing whenever x2> 4

J(x) 1

Sol. The equilibrivum point(s) are found as follows: X = f(x,) = 0

~ 3662—4=O=}'xel=—2,xe2




Phase line cf First Order Systzms

[xom,a& 2: For X =f(x) ,f(x) = — 4 + x2 use phase diagram to analyze

Lts sta bLL'Ltg.

Sol. stability be examined by drawing the vector diagram from a point x=p1:
Py =it F )
choose few points arownd equilibrivum points:
P=1= P=1+f(1)=1-3=-2
P,=4 = P,=4+12=16
wE =

—o

Xel=—2

STABLE NODE | PHASE LINE | ORETAE




Vector field for second order system [4]
®Example i = f(x) = (fi(x), H(x)) = (2x{, x,)

To draw the vector at x=(1,1):

we draw an arrow pointing from Pi1=x=(1,1) to

P2=P1+(f1(P1),f2(P1)) =(1,1)+(L,1)=(3,:).

z=(1,1)

|

@®Repeating this for every point we obtain a vector field diagram
(see page 36-37 of [4]).




Graphical phase portrait for second order systems [4 p36-37]

@®The length of the arrow at a

given point is proportional to

the length of
f0) ive. AR+,

|
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The veclor ﬁela at a POlnt 18 Vector field diagram of the pendulum equation without friction.

tangent to the trajectory through

that point.




qraphical phase portrait for second order systems [4 P36-37]

®We can, in essence, construct trajectories

from the vector field diagram.

\

@®Starting a trajectory from x, = (x,(0), x,(0)),

&

E

it moves along the vector field at x,. This

” / / / I

e e

will lead us to a new point x,.

\\
\
\
\

®We continue the trajectory along the

vector held at x..

-~
”
/
|
\
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e
.

\
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\
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@If this process is repeated carefully and

Tt

5

I
(&3]
o, |}

consecutive points are chosen close to

each other, we can obtain a reasonable

Vector field diagram of the pendulum equation without friction.

approximation of the trajectory through

XO0.

J¥a closed trajectory indicates periodic solution.

28




Drawing Phase Portrait [&]

¥ Phase plane trajectories follow the direction field. The velocity vector

for a solution at a point (x1, x2) in the plane is {1 (x1,x2), f2 (x1,x2) .

The direction of the trajectory is the direction of this vector.

¥An approxtmate pieture of the phase portrait can be constructed by
plotting trajectories from a Large number of initial states spreao all

over the state pLa ne.

¥ The curves 1 (x1,x2) =0 and {2 (x1,x2) =0 are the nullelines on which

the direction of a trajectory is vertical and horizontal respectively.

HThe Lntersection points of the nullclines represent the equilibrivm

‘Poiwts.




Phase Portrait [4, &]

¥Phase plane portrait can be easily constructed using computer

stimulations.

¥Since the time t s eliminated tn a tm\jeotorg, Lt Ls wnot possible to

rebuild the solution (x1(t), x2(t)) associated with a given trajectory.

Therefore, a trajectory provides a qualitative but wot quantitative

behavior for the associated solution.

’

¥For example, a closed trajectory indicates periodic solution, i.e.

sustawned oscillation while a shrinking spiral ndicates a decaying

solution.
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Phase Plane of Linear Systems [4]

[ The phase portrait provides tmportant information about system stability

throughout the behavior around each equilibrivum point.

[Awe’'ll describe the phase plane analysis of linear systems because nonlinear

systems behave simiLarLg to a Lunear system around equilibrivm poiwts.

A nonlinear system near an equilibrium polnt can take one of the patterns

of linear systems.

[ correspondingly the equilibrium points are classified as stable wode,

unstable wode, saddle, stable focus, unstable focus, or center.

[ n general, qualitative behavior of a nonlinear system near an equilibrium

Poiwt cawn be determined via Linearization around that equilibrivm poiw’c.




Phase Plane @C Linear Systems [1]

Eywe will classify the type and stability of the equilibrium solution of a given

linear system by the shape formed by the trajectories about each critical point.

we will smeLH consider the second-order Linear system described bgj

xXr=Ax

| respeot'u/eLH.

(JTo obtain the phase portrait of this Linear system, we first solve for the time

lfu',s’corg x(t), le.q.:

A

XD = e Ty B ez Vs [Jor] AE 4

C1> € arve constants (scalars), x(1) =




Phase Plane of Linear Systems [1]

¢ The following cases of system (nonzero) eigenvalues can occur

1. Ay and A, are both real and have the same sign (positive or negative)
2. A and A, are both real and have oppostte signs
3. A and A, are complex conjugate with non-zero real parts

4, A and A, are complex conjugates with real parts equal (o zero




Phase Plane of Linear Systems [9]

Given x' = Ax, where there Ls only one critical point, at (0,0):

(JCASE 1: Real Distinct elgenvalues
X(t) — Clelltvl + CzeﬂthZ fO”' /11 ;é 2«2

ZWhewn A, A, are both positive, or are both negative
2The trajeatories that are the elgenvectors move in stratght Lines.

2 The rest of the trajectories would bewo toward the direction of the etgenvector of
the elgenvalue with the larger value.

2 The trajectories either move away from the singular point to tnfinite-distant
away (whew A1, Ay ave both positive).
20r wmove toward from infinite-distant anod converge to the equilibrium point

(Whew A1, 4, are both negative).

BThis type of critical point Ls called a wode. It Ls asywmptotically stable uf the
etgenvalues are both negative, unstable if both are posttive.




Phase Portrait @[ Linear Systems [1]

2The trajectories that are the elgenvectors move in straight Lines toward the
equilibrium or away from Lt depending ow the signs of the eigenvalues.

stable node
L)
(a)
&
unstable node
ot X

(b)






Phase Plane of Linear Systems [9]

Given x' = Ax, where there is only one critical point, at (0,0):

(JCASE 1: Real Distinct etgenvalues

x() = CieMtvy + Cre™v,  for A # A,

2wWhewn Ay, A5 have opposite signs

Zthe trajectories given by the eigenvectors of the negative eigenvalue initially start
at infinite-distant away, wove toward and eventually converge at the critical

‘Poiw’c.

> The trajectories that represent the elgenvectors of the positive eigenvalue move in
exactly the opposite way: start wear the critical point then diverge to infinite-

distant out.

»Every other trajectortj starts at infinite-distant awa Y, wmoves toward but wever
converges to the critical point, before changing direction and woves back to

iwﬁwi’ce—d Lstant awa Y-

B This type of critical point s called a saddle point. It is always unstable.




saddle point

g

{¢)




Phase Plane of Linear Systems [9]

Givem x' = Ax, where there is only one critical point, at (0,0):

UCASE 2: Real repeated eigenvalues A =4, =41 € R

2If the matrix A ie a multiple of the [dentity matrix then there are two linearly independent

eigenvectorg

A=a [(1) (1)] ,a g any nonzero congtant,  x(f) = e*(Cv; + Cyv,)

Bvery nonzero solution traces a straight-line tm\jectorg, L the direction
given by the vector C1 vi + C2 v2. The phase portrait thus has a distinet

star-burst shape.

2 the equilibrium point ie a proper node or star node.

stability: It s unstable uf the etgenvalue is positive; asymptotically
stable if the elgenvalue is negative.




Phase Plane of Linear Systems [9]

Glvem X' = Ax, where there is only one critical point, at (0,0):

YcASE 2: real vepeated eigenvalues, 4 =L, =1 E€R, A # a

;
1_

B
0

[t the eigenvalues are real and repeated, then the critical point ig either a star
or it ig an improper node.

[t the matrix A is not a multiple of the [dentity matrix and there ig one linearly

independent eigenvector v;:

x() = Cie*v; + Coe(tvy + vy)
[n thig cage of improper node, trajectorieg are tangential to the sole

eigenvector.

[t is agymptotically unstable it 2 > 0 , gtable it 2 < 0.




A star (unstable) and an improper node (unstable)



Phase Plane of Linear Systems [9]

Givem x' = Ax, where there is only one critical point, at (0,0):

(ICASE =: Complex conjugate eigenvalues, 410 € C

2If the eigenvalueg are non-real of the form A, =a = Bi the critical point ig either

a gpiral point or a center point.

2If o >0 | the critical point ie an ungtable focug (gpiral) point.

2If o <0 , the critical point ie an agymptotically stable focug (gpiral) point.
2If =0 |, the critical point ie a center and sometimes it ie referred to ag neutrally

atable.




stable focus

(d)

center point

L

(f)



Phase Portrait of Linear Systzms [7]

X,=—ax,,a>0

Distribution of
Poles

Phase Portrait

Singular
Point

A

(0,0)
Saddle
point

X-axis
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Phase Plane of Linear Systems [9]

SEa\bLLLE:} n summary

As tincreases T — 00 , if all (or almost all) trajectories

M converge to the critical polnt — asy mptotiea Ly stable,

Mwmove away from the critical point to infinitely far away —

unstable,

Astay in a fixed orbit within a finite (i.e., bounded) range of
distance away from the critical pount — stable (or weutrally

stable).




Phase Plane Qzlnafysis of Linear systems

Example 2: Dnaw Uee Phade potrait of te following dystem.

BRPEBYR
X= AX, A=

Sot. \ -2 5 i

X, ==X +4X,
X, = ~2X, +5X,

The equilibrivum point ts found as follows X = AxX=0> Xeq — (O, O),

1 [ 210

1
The equilibrivum point Ls unstable node.

; : [ %, = (5% | [ PN |
Draw twn phase plane the etgenvectors.

REMINDER: TO FIND THE EIGENVECTOR FOR THE ABOVE SYSTEM USE (1.1 — A)v. = 0

The etgenvalues and etgenvectors are 3 _ 1, V,= [ 2 ] D 3 ek

48




Concqots (f Phase Plane ?lna[ysis

=0

=1 \71:[ i j ,12=3,\72:[ ﬂ

Draw the etgenvectors vi and v2.

Choose few points like x1=2, X2=1 or P1=(2,1) and draw the resulting vector:

P=P+f(x)=P+ Ax

1D N R VAR
46 |8 B2 L 3| P

¥ A i L G )

Thus the vector based at (2,1) is pointing to (4,2) .. Ls it logical?? wh Y??




Phase Plane Qzlna[ysis of Linear systems

Exampte 2 X:AX,A:( =y 4]
20 5

x=P3=(1,1) and draw the resulting vector:

/1\(_14\/ Nl

p=P+Ax=| * |+ 4 4
CE e )

Thus the vector based at (1,1) is pointing to (4,4) .. wh Y??

Choose a poiw’c not ow the eLgen vectors Like P5= (4,1)

/_1 4\/4\

P.=R+ AXx= -F
. 2 2 )L 1




Concqots @C Phase Plane ?lna[ysis
Examplle 2
% = AX,A:( —L4 )
-2 5

Now see what happens from the result Po= (4,-2)

/4\+/_14\(4\ /_8\

RV BSCAE AR aE Ay,

~w Notice that the vector field is directed toward the etgen vector v2 of /12 =3
i t 3t
~~This is because as  X(t) = Cle V, T Cze Vv,

~ d<e’ for to e




Phase Plane ﬂna[ysis @C Linear systems

b 2
xample “h s

=25

X= AX, A=

Equitébrmm:

Unstable Node

Note the the vector

field starts parallel

ko V1 and ends

F»ocmttat

ko V2 .




Concqots cf Phase Plane ﬂna[ysis
Example 3: Dnaw Uie Phase M

\
of Uhe following dystem. X = -3 0

W

Sod.

1.The equilibrivum point ts Xeq — (0,0)

2.The eigenvalues and etgenvectors are A, =—2, V, = [ ; ] A

=.The equilibrivm point is a stable wode. | /\—I
xl — O

4.Braw the etgenvectors and nullelines on the phase plane.

5.Now, take few polnts on the eigenvectors above and below each ana check the

directlon.




Phase Plane Qzlna[ysis of Linear systems
Example 3:
S = 4§ W

NE B L,

X

3
The nullelines are: 1))(1 = O, 2))(2 = E Xl

Choose few points Like x1=-2, X2a=0
P, =P+ AX

TBEES AR
0 3 -2 0 —6
Take on the second nulleline x=(-1,-1.5):

( il \
S e g Al

54




Concqots (f Phase Plane ?lna[ysis

Bamit P AR N 1 W
NE B L,

Now see what happens from the result Pe=(4,-2)

4\+/_14V4\ /_8\

2N b e 29T

X

~w Notice that the vector field is dirvected toward the elgenvector vi of A, =—2

~~This is because vi1 is associated to the slowest eigenvalue A, =—2 why?

See section 2.1 of [4] for details.




Phase Plane ﬂna[ysis @C Linear systems

] 4.0e+0 -3.0e+0 -2.0e+0 -1.0e+0 Sl 1.0e+0 20e+0 3.0e+0 4.0e+0
4 3

..
<
..

7 20e+0




Phase Plane ﬂna[ysis of Linear systems

4.0e+0

RN
Bare=2

X

Note Ehat the vector

field starts parallel
e,

ko V1 and ends parallel _40e+0\3.0e+0 -2.0eM8_-1.0e+0 4

ko V2 . -1.,6é+ ‘ '\,

7 2.0k




Phase Plane ﬂnafysis of Linear systems
Example 3: Dnaw the Phade podeadd

of Uhe following dystem.
ot

1.The equilibrium poiw’c ls X = (O O)
eq )

2.The etgenvalues and etgenvectors are A =4, V, :(

3.The equilibrivum poiwt ls a Saddle node.

4.Draw the etgenvectors and nullelines own the phase plane.

5.Now, take few poiwts ow the elgenvectors above and below each and check the

direction.




Concqots @C Phase Plane ﬂna@sis

4.06+0 -3.0e+0 -2.0e+0 -1.0e+3”7/1  10e+0 2.0e+0 3.0e+0 4.0e+0

-1.0¢+0 ¢




Phase Plane ﬂna[ysis of Linear systems

Example 3:




Concqots (f Phase Plane ﬂna@sis

Example 4: Dnaw the Phade poitradd / \

=7 1
of Uhe following dystem.
SE= Y
Sot.

1.The equilibrivm point is X = (0,0)
€J
2.The etgenvalues and etgenvectors are

3.The equilibrivum poiwt Ls a Stable node.

4.Draw the etgenvector and nullelines on the phase plane.

5.Now, take few poiwts ow the elgenvectors above and below each and check the

direction.




Phase Plane Sztnafysis of Linear systems

s

S _10e+0 286+0 3.0e+0 4.0e+0
. ®
7 | ¥

.




HOME WORKS

* Draw phase portrait of the following systems:

1 X:[—lo O]Xz, IS RS T R i S
' 0 -10 S35 9 kn

2.Diagonalize (put in Jordan form) the following system matrices (if possible) and draw
the phase portrait for the original and uncoupled system (see section 2.1 of [4]):

X:_lgx, >'<:13x
O’ B2

4.Prove that for a system having the solution vector

A Aot

x(t) = cieM'vy + cevy,  for Ay # 4y, for ¢; = 0 the resulting trajectory will be on the

eigenvector v;.

a3l B0
5.Prove graphically that in the phase plane for X_( 3 F =7 ]X if the initial point xo is

on any of the eigenvectors, the resulting trajectory remains on that eigenvector.




Why an Equilibrium point is called Singular Point ?[1]

@®To answer this, let us examine the slope of the phase trajectories.

@®The slope of the phase trajectory passing through a point (xza:) 1s

determined by

dx, _ f,(%,%)

ax,  T(X,%,)

®With the functions f7 and f2 assumed to be single valued, there is

usually a definite value for this slope at any given point in phase plane.

This implies that the phave trajectories will not intersect.

@At vingular points, however, the value of the slope is 0/0, ie., the slope s

indeterminate. Many trajectories may intersect at such pointy.

®This indeterminacy of the slope accounts for the adjective “singular'.
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