L_ecture Course In

Intelligent Control Systems

4™ Class in the Control and Systems

Engineering Department
University of Technology
CCE-CN432

Edited By:
Dr. Mohammed Y. Hassan, Ph. D.

Intelligent Control Systems

Svyllabus
Fourth Year. Theoretical: 2 Hr./ Week
CCE-CN432 (Semester)
1. Introduction: (2 Hrs)
2. Neural Networks (NNs) (6 Hrs)

e Artificial Neuron, Types of Non-Linearities, Why Sigmoid.

e Types of NNs, Feed-forward, Feedback, Supervised and Unsupervised.

e Learning Algorithms, Basic Delta Rule, Back propagation, Associative
memory.

e Architectures, Hopfield, Hamming, Kohonen, Neocognition.

e Applications.

3. Fuzzy Logic (FL):
e Introduction, Fuzzy Concepts, Fuzzy Sets, Fuzzy operations, (6 Hrs)
Fuzzification (Types of).
¢ Inference Engine, Rule-Base, Types of Defuzzification, (6 Hrs)
Fuzzy Logic Control (FLC).

4. Genetic Algorithms (Gas):

¢ Introduction, Elements of Gas, Genetic Operators, (4 Hrs)
Initialization, Coding.
e Fitness Function, Selection, Crossover, Mutation. (4 Hrs)
5. Hybrid Systems (2 Hrs)
Total: 30 Hrs

Intelligent Control Systems

References:

1. “Introduction to Artificial Neural Systems”

By: Jacek M. Zurada, 1999.
2. “Fuzzy Control”

By: Kevin M. Passino and Stephen Yurkovich, 1998.
3. “Practical Genetic Algorithms”

By: Randy L. Haupt and Sue Ellen Haupt, 2004

Intelligent Control Systems

1. Introduction:

Over many centuries, tools of increasing sophistication have been developed to
serve the human race. Physical tools such as chisels, hammers, spears, arrows,
guns, carts, cars, and aircraft all have their place in the history of civilization.
The human race has also developed tools of communication — spoken
language, written language, and the language of mathematics. These tools have
not only enabled the exchange and storage of mformation, but have also
allowed the expression of concepts that simply could not exist outside of the
language.

The last few decades have seen the arrival of a new tool — the digital
computer. Computers are able to perform the same sort of numerical and
symbolic manipulations that an ordinary person can, but faster and more
reliably. They have therefore been able to remove the tedium from many tasks
that were previously performed manually, and have allowed the achievement
of new feats. Such feats range from huge scientific “number-crunching”
experiments to the more familiar electronic banking facilities.

Although these uses of the computer are impressive, it 1s actually only
performing quite simple operations, albeit rapidly. In such applications, the
computer is still only a complex calculating machine. The intriguing idea now
is whether we can build a computer (or a computer program) that can think.

Research in artificial intelligence (or simply Al) is directed toward
building such a machine and improving our understanding of intelligence. The
ultimate achievement in this field would be to construct a machine that can

mimic or exceed human mental capabilities, mcluding reasoning, under-
standing, imagination, recognition, creativity, and emotions. For instance,
machines are now able to play chess at the highest level, to mterpret spoken
sentences, and to diagnose medical complaints. An objection to these claimed
successes might be that the machine does not tackle these problems in the
same way that a human would.

In achieving these modest successes, research into artificial intelligence,
together with other branches of computer science, has resulted in the
development of several useful computing tools.

Intelligent Control Systems

These tools have a range of potential applications their use in engineering
and science. The tools of particular interest can be roughly divided among
knowledge-based systems, computational intelligence, and hybrid systems.
Knowledge-based systems include expert and rule-based systems,

object-oriented and frame-based systems, and intelligent agents.
Computational intelligence includes neural networks, genetic algorithms and
other optimization algorithms. Techniques for handling uncertainty, such as
fuzzy logic, fit into both categories.

Knowledge-based systems, computational intelligence, and their hybrids
are collectively referred to here as intelligent systems.

Knowledge-based systems

The principal difference between a knowledge-based system (KBS) and a
conventional program lies in the structure. In a conventional program, domain
knowledge 1s mtimately intertwined with software for controlling the
application of that knowledge. In a knowledge-based system, the two roles are

explicitly separated. In the simplest case there are two modules — the
knowledge module 1s called the knowledge base, and the control module is
called the inference engine. In more complex systems, the

inference engine itself may be a knowledge-based system containing meta-
knowledge, 1.e., knowledge of how to apply the domain knowledge.

extra frills, knowled lanati
commonin »| _ Knowle ged | exp agailcm <
expert systems acquisition module module
A
Y
knowledge base [inference engine
essential <> <>
components
= interface to the outside world w4
humans hardware data other software

Figure , The main components of a knowledge-based system

Intelligent Control Systems

The explicit separation of knowledge from control makes it easier to add
new knowledge, either during program development or in the light of
experience during the program’s lifetime. There i1s an analogy with the brain,
the control processes of which are approximately unchanging in their nature
(cf. the inference engine), even though individual behavior is continually
modified by new knowledge and experience (cf. updating the knowledge base).

Expert systems

Expert systems are a type of knowledge-based system designed to embody
expertise 1n a particular specialized domain. Example domains might be
configuring computer networks, diagnosing faults in telephones, or mineral
prospecting. An expert system is intended to act as a human expert who can be
consulted on a range of problems that fall within his or her domain of
expertise. Typically, the user of an expert system will enter into a dialogue in
which he or she describes the problem (such as the symptoms of a fault) and
the expert system offers advice, suggestions, or recommendations. The
dialogue may be led by the expert system, so that the user responds to a series
of questions or enters information into a spreadsheet.

Since an expert system is a knowledge-based system that acts as a
specialist consultant, it is often proposed that an expert system must offer
certain capabilities that mirror those of a human consultant. In particular, it 1s
often claimed that an expert system must be capable of justifying its current
line of inquiry and explaining its reasoning in arriving at a conclusion.

Computational intelligence

The knowledge-based systems are all symbolic representations, in which

knowledge i1s explicitly represented in words and symbols that are
combined to form rules, facts, relations, or other forms of knowledge
representation. As the knowledge is explicitly written, it can be read and

understood by a human. These symbolic techniques contrast with numerical
techniques such as genetic algorithms and neural networks.

Here the knowledge is not explicitly stated but is represented by numbers
which are adjusted as the system improves its accuracy.

These techniques are co]lectively known as compuf(m'onai r'nfe.?ﬁigence((:l)
or soft computing.

Intelligent Control Systems

soft compytine js defined as “a collectionof computational techniques in computer
science, Al, machine leamning and some engineering disciplines, which attempt to study,
model, and analyze very complex phenomena: those for which more conventional
methods have not yielded low cost, analytic, and complete solutions.” The typical
techniques that belong to the soft computing arena include artificial neural networks
(ANNSs), fuzzy sets and systems, evolutionary computation including evolutionary
strategies (ESs), swarm intelligence and harmony search, Bayesian network, chaos
theory, etc. Much of these soft computing techniques are inspired by biological
processes or are the results of attempts to emulate such processes.

All software

Neural networks

Evolutionary
algorithms

(D

Rule-based
systems

Bayesian updating,
certainty theory,
fuzzy logic

Simulated
annealing

Objects, frames,
and agents

Knowledge-

Computational
based systems

intelligence

Figure Categories of intelligent system software

= neural networks:

» genetic algorithms or, more generally, evolutionary algorithms;

» probabilistic methods such as Bayesian updating and certainty factors;
+ fuzzy logic;

» combinations of these techniques with each other and with KBSs.

Examples of systems that would require and benefit from intelligent control and
optimization include electric power plants and their distributed networks, military
command and control systems, air traffic control systems, biological systems, and
manufacturing systems.

Intelligent Control Systems

2. Neural Network (NN)

Introduction:

Computers are extremely fast and precise in executing sequences of
instructions that have been formulated for them. A human information processing
system is composed of neurons switching at a speed about a million times slower
than computer gates. In the contrary, humans are more efficient than computers at
computationally complex tasks such as speech and pattern recognition.

organs

External feedback

Figure Information flow in nervous system.

Artificial neural networks:

Artificial neural networks (or it can also be called neural networks) are “cellular
systems which acquire, store, and utilize experimental knowledge. The knowledge
Is in the form of stable states or mapping embedded in the networks that can be
recalled by the user”.

It has the ability to reproduce some of the flexibility and power of the human
brain by artificial means. Neural networks must be taught or trained to learn new
associations and new patterns. Learning corresponds to parameter changes.
Learning rules and algorithms used for experimental training of networks replace
the programming required for conventional computation.

Neural network users do not specify an algorithm to be executed by each
computing node as would programmers of a more traditional machine. Instead, they
select what in their view is the best architecture, specify the characteristics of the
neurons and initial weights, and choose the training mode for the network.
Appropriate inputs are then applied to the network so that it can acquire knowledge
from the environment. As a result of such exposure, the network assimilates the
information that can later be recalled by the user. Network computation is
performed by a dense mesh of computing nodes and connections. They operate
collectively and simultaneously on most or all data and inputs.

Intelligent Control Systems

Biological Neurons:

A human brain consists of approximately 10" computing elements called
neurons. They communicate through a connection network of axons and synapses
having a density of approximately 10* synapses per neuron.

e Neurons communicate with each other by means of electrical impulses. The
neurons operate in a chemical environment that is even more important in terms
of actual brain behaviour.

e The input to the network is provided by sensory receptors. Receptors deliver
stimuli both from within the body, as well as from sense organs when the stimuli
originate in the external world.

e As aresult of information processing in the central nervous systems, the effectors
are controlled and give human responses in the form of diverse actions.

e The elementary nerve cell, called a neuron, is the fundamental building block of
the biological neural network.

Incoming AxXons
/f’ from other neurons
&

Dendrites «%:

Cell body
(Soma)

e

P
Axon
synapse
" 1 Ty, oL
. Receiving
Terminal Neuron
Button
mv
Impulse
Time

Figure. Structure of a neuron.

= A typical cell has three major regions: the cell body, which is also called
the soma, the axon, and the dendrites.

= Dendrites form a dendrites tree, which is a very fine bush of thin fibbers
around the neuron's body. They receive information from neurons through
axons-long fibres that serve as transmission lines.

= An axon is a long cylindrical connection that carries impulses from the

9

Intelligent Control Systems

neuron. The end part of an axon splits into a fine arborisation. Each branch
of it terminates in a small end bulb almost touching the dendrites of
neighbouring neurons.

» The axon-dendrite contact organ is called a synapse. The synapse is where
the neuron introduces its signal to the neighbouring neuron. The signals
reaching a synapse and received by dendrites are electrical impulses.

= The inter-neuronal transmission is sometimes electrical but is usually
affected by the release of chemical transmitters at the synapse. Thus,
terminal buttons generate the chemical that affects the receiving neuron.

= The receiving neuron either generates an impulse to its axon, or produces
No response.

e The neuron is able to respond to the total of its inputs aggregated within a short
time interval called the period of latent summation.

e The neuron's response is generated if the total potential of its membrane reaches
a certain level. Specifically, the neuron generates a pulse response and sends it
to its axon only if the conditions necessary for firing are fulfilled.

e Incoming impulses can be excitatory if they cause the firing, or inhibitory if
they hinder the firing of the response. A more precise condition for firing is that
the excitation should exceed the inhibition by the amount called the threshold of
the neuron, typically a value of about 40mV

e Since a synaptic connection causes the excitatory or inhibitory reactions of the
receiving neuron, it is practical to assign positive and negative unity weight
values, respectively, to such connections.

e This allows us to reformulate the neuron's firing condition. The neuron fires
when the total of the weights to receive impulses exceeds the threshold value
during the latent summation period.

e After carrying a pulse, an axon fibre is in a state of complete non-excitability for
a certain time called the refractory period. For this time interval the nerve does
not conduct any signals, regardless of the intensity of excitation.

e Thus, we may divide the time scale into consecutive intervals, each equal to the
length of the refractory period. This will enable a discrete-time description of
the neurons' performance in terms of their states at discrete time instances.

Applications of Neural Network:

Neural networks are useful and applicable for solving real world problems, like:
1. Pattern recognition. (Like Image processing, speech recognition,
robotics...etc)

Risk assessment.

Diagnostics (in medicine, engineering, manufacturing ... etc).

Data compression.

Optimization (Like sales man route).

Addressable memories.

ok ow

10

Intelligent Control Systems

7. Control.
8. Weather Forecasting.

Elements and modeling of neural networks:

The basic processing elements of Neural Network are called neurons or
nodes. Neurons perform as summing and nonlinear mapping junctions. In some
cases they can be considered as threshold units that fire when their total input
exceeds certain bias levels. They are often organized in layers and feedback
connections both within layer and towards adjacent layers are also allowed. The
strength of each connection is expressed by a numerical value called a weight,
which can also be modified. Neurons usually operate in parallel and are configured
in regular architectures.

connection
wy
x1 /
L[4

\AUZ

X2

ﬂwa} —’ o

Neuron's
processing node

(Summing point)

Wn

Multiplicative
weights

Figure. General symbol of a neuron.

The signal flow of neuron inputs, Xi, is considered to be unidirectional as indicated
by arrows, as is a neuron's output signal flow. This symbolic representation, Figure
above, shows a set of weights and the neuron's processing unit, or node. The
neuron output signal is given by the following relationship:

o=fwl.X),

or

0= f(2?=1wi'Xi)’

where w is the weight vector defined as:

walw wy wy]”

and

X2[X; X . . X"

X is the input vector.

The function f(wT.X) is often referred to as an activation function. Its domain is
the set of activation values, net, of the neuron model, it is often written as f(net).
The variable net is defined as a scalar product of the weight and input vector:

net 2 wl. X

11

Intelligent Control Systems

Types of Non-Linearities (Activation Functions):

Activation functions can be divided into two categories:
1) Soft-limiting (continuous) activation functions:
Typical of these activation functions used are:

a) bipolar sigmoid
f(net) 2 ot -1,

AS(net}

=7 53215105
! 2 3 net

Figure. Bipolar Sigmoid activation function.

where A > 0 is proportional to the neuron gain determining the steepness of
the continuous function f(net) near net=0.

b) Unipolar sigmoid:
By shifting and scaling the bipolar activation function, a unipolar

continuous activation function can be obtained:

1
f(net) 2 T omet

Figure. Unipolar Sigmoid activation function.

c) Linear:
A linear function can also be used as an activation function:
f(net) = net.

12

Intelligent Control Systems

. f(net)=net

; net

Figure. Example of a linear activation function.

2) Hard-limiting (binary) activation functions:
a) Bipolar binary:
As 1 — oo in the bipolar continuous activation function, the bipolar binary
activation function is obtained:

R +1 net=0
f(net) 2 sgn(net) = {_1 zgt <0

A fnet)

Figure. Example of a Bipolar binary activation function.

b) Unipolar binary:
As A — oo in the unipolar continuous activation function, the bipolar binary
activation function is obtained:

s +1 net=0
f(net) 2 sgn(net) = {0 :zl:t <0

4 f(net)
1

P
b | - | | | | L
3 2 X 1 2 3 net

Figure. Example of a unipolar binary activation function.
Note:
Any function, f(net), that is monotonically increasing and continuous such that
net € R and f(net) € (—1,1) can be used instead.

13

Intelligent Control Systems

Types of Neural Networks (NNs):

Neural networks can be defined as an interconnection of neurons such that
neurons outputs are connected through weights to all other neurons including
themselves; both lag-free and delay connections are allowed. Therefore; one can
define two general types of artificial neural networks:

a) Feed-forward and feedback networks:
The mapping of an input pattern into an output pattern in the feed-forward
neural network is of feed-forward and instantaneous type, since it involves no
time delay between the input and output.

Input Hidden
Layer Layer

o0

Figure. Muti-layer Feed-forward neural network.

b) Feedback neural network:
It is obtained from the feed-forward one by connecting the neuron’s output to
their inputs. In this case, the present output, o(t), controls the output at the
following instant o(t+A). This network is also called Recurrent neural network.

=0
= l=
L= i
x,(0) “u :ﬁl » 0,(1+4)
W w
@,(2) 2 2
Wi
W, xm; Instantaneous oftrd)
x{0) — oy (1+A)) Neural Network
o4(r) 2
- W,
=" o)
Lag-free
* * neurons { oy |
W A
|
W2 - ‘/\/
X, (0) o—t P = o (F+N)
o,0f) (]
& J-=
| I

Delay elements

Figure. Feedback neural network.

14

Intelligent Control Systems

Neural network Recall:

The process of computation of the output response (o) for a given input (X)
performed by the network is known as recall.
e Recall is the proper processing phase for a neural network and its objective is
to retrieve the information.
e Recall corresponds to the decoding of the stored content which may have
been encoded in a network previously.

Types of recall patterns:
= Autoassociation.
If a set of patterns can be stored, then if the network is presented with a
pattern similar to a member of the stored set, it may associate the input with
the closest stored pattern. The process is called autoassociation.

Input

pattern Autoassociation
Distorted Square
square

Figure (10) Autoassociation.

= Hetroassociation:
In hetroassociation processing, the association between pairs of patterns are

stored.
Input
pattern A_" O Hetroassociation
C O0—0O O
Distorted —
square X 8

Figure (11) Hetroassociation.

= Classification:
If a set of input patterns is divided into a number of class or categories, then
in response to an input pattern, the classifier should recall the information
regarding class membership of the input pattern. Typically, classes are
expressed by discrete-values output vectors, and thus output neurons of
classifiers would employ binary activation functions.

15

Intelligent Control Systems

Class
Input number
pattern

Aa—](ax0) :

Figure (12) Classification .

= Generalization:

One of the distinct strengths of neural networks is their ability to generalize.
The network is said to generalize well when it sensibly interpolates input
patterns that are new to the network.

4000

X-training data
s New training data

Figure(13) Generalization.

Supervised and unsupervised Learning modes:
Learning is necessary when the information about inputs/outputs is unknown or
incomplete, so that no design of a network can be performed in advance. The
majority of the neural networks covered in this text require training in supervised
or unsupervised learning modes:
e Supervised learning mode:
In this type of learning we assume that at each instant of time when the
input (X) is applied, the desired response (d) (teacher or supervisor) of the
input is provided. The distance between the actual and desired response
serves as an error measure and is used to correct network parameters
externally (weights and biases) so that the error decreases. Since we
assume adjustable weights, the teacher may implement a reward-and-
punishment scheme to adapt the network’s weight matrix (\W).

16

Intelligent Control Systems

Adaptive
X network 0
M-
Learning
. signal

Distance d
generator

] pld, o]

Distance measure

Figure (14) Supervised learning algorithm.

e Unsupervised learning mode (learning without teacher):
In this mode of learning, the desired response is not known; thus, explicit
error information cannot be used to improve network behaviour. Since no
information is available as to correctness or incorrectness of responses,
learning must be somehow be accomplished based on observations of
responses to inputs that we have marginal or no knowledge about.

Adaptive

network ﬁ 0
M-

Figure (15) Unsupervised learning algorithm.

Unsupervised learning algorithms use patterns that are typically redundant
raw data having no labels regarding their class membership, or
associations. In this mode of learning, the network must discover for itself
any possibly existing patterns, regularities, separating properties, ...etc.
while discovering these, the network undergoes change of its parameters
which is called self-organization.

X
2 Xy

:
e

X
X
0 (a) ! 0 1

Figure (16) Two-dimensional patterns: a) Clustered b) No apparent clusters
= |earning with supervision corresponds to classroom learning with the
teacher’s questions answered by students and corrected, if needed, by
the teacher.

17

Intelligent Control Systems

= Learning without supervision corresponds to leaning the subject from
videotape lecture covering the material but not including any other
teacher’s involvement. Therefore, the student cannot get explanations of
unclear questions, check answers and become fully informed.

1. Learning rules:

A neuron is considered to be an adaptive element. Its weights are modified
depending on the input signal, its output value, and the associated teacher
response. In some cases, the teacher signal is not available and no error
information can be used (unsupervised learning method).

For the neural network shown below, the j™ input can be an output of another
neuron or it can be an external input. Under different learning rules, the form of
the neuron’s activation function may be different. Note that the threshold
parameter may be included in learning as one of the weights. This would require
fixing one of the inputs, say X,,, (Ex.: -1).

X4

Y
Learning

signal
generator %
w,=[w,Wy...w,] is the weight vector ¢
undergoing training

Figure (17) Single neuron

A
R

18

Intelligent Control Systems

The following general learning rule is adopted in neural network studies
(Amari 1990): The weight vector w; = [w;; W, -~ w,-,,]I increases in pro-
portion to the product of input X and learning signal r. The learning signal r is
in general a function of w;,x, and sometimes of the teacher’s signal d;. We thus
have for the network shown in Figure(17):

- r=r(wx, d;)
The increment of the weight vector w; produced by the learning step at time ¢
according to the general learning rule is:
Aw,(t) = cr [w,»(t), x(t),di(t)] x(1)

where ¢ is a positive number cailed the learning constant that determines the
rate of learning. The weight vector adapted at time t becomes at the next instant,
or learning step,

wi(t + 1) = wi() + cr [w;(5),x(2), d{(D)] x(D)

The superscript convention will be used in this text to index the discrete-time
training steps. For the k’th step:

1

witl = wik + cr(wik,x",dik)xk

The learning above assumes the form of a sequence of discrete-time weight

modifications. Continuous-time learning can be expressed as

dw;(?)

— = rx t
ar (1)

There are several methods used to train the neural network, in the following is
the explanation of two methods; i.e Hebbian learning rule (unsupervised
learning) and Perceptron learning rule (supervised learning).

19

Intelligent Control Systems

Hebbian Leaj'nlng Rule

For the Hebbian learning rule the learning signal is equal simply to the
neuron’s output (Hebb 1949). We have

A
r = f(wx)
The increment Aw; of the weight vector becomes
Aw; = of (Wix)x
The single weight w;; is adapted using the following increment:
AW:‘j = Cf(W?X)xj
This can be written briefly as
Aw; = cop;, forj=1,2,....n

This !earning rule requires the weight initialization at small random values
around w; = 0 prior to learning. The Hebbian learning rule represents a purely
feedforward, unsupervised learning.

Example 1:
This example illustrates Hebbian learning with binary and continuous activation

functions of a very simple network. Assume the network shown in Figure below:

With the initial weight vector:

20

Intelligent Control Systems

1
wel|
0.5
needs to be trained using the set of three input vectors as below
1 1 0
< = -2 < = -0.5 X = 1
! 1.5 2 v -1
0 —1.5 1.5

for an arbitrary choice of learning constant ¢ = 1. Since the initial weights
are of nonzero value, the network has apparently been trained before-
hand. Assume first that bipolar binary neurons are used, and thus f(net) =

sgn (net). _
Step 1 Input x, applied to the network results in activation ner! as below:
1
net' =wix; =[1 —1 0 05] 2 | =3
1 ' 1.5
0

The updated weights are
w2 = w' + sgn (net')x, = w' + x,

and plugging numerical values we obtain

1] T2
, | -1 -2 | _|-3
=1 o |t 15| T 1s
0.5 0 0.5

where the superscript on the right side of the expression denotes the
number of the current adjustment step.

Step 2 This learning step is with x, as input:
1

nett = whx, = [2 -3 1.5 0.5] :2'5 = —0.25

—-1.5
The updated weights are

21

Intelligent Control Systems

0
net’ = w'x; = [1 -25 35 2] _i = -3
1.5
The updated weights. are
| 1
wh=w + sgn(ftez‘?’)x_q, =w —x; = —ig
0.5

It can be seen that learning with discrete f(net) and ¢ = 1 results in
adding or subtracting the entire input pattern vectors to and from the weight
vector, respectively. In the case of a continuous f(net), the weight incre-
menting / decrementing vector is scaled down to a fractional value of the
input pattern.

Revisiting the Hebbian learning example, with continuous bipolar ac-
tivation function f(net), using input x, and initial weights w!, we obtain
neuron output values and the updated weights for A = 1 as summarized in
Step 1. The only difference compared with the previous case is that instead
of f(net) = sgn (net), now the neuron’s response is computed using bipolar
continuous activation function

Step 1
| f(net') = 0.905
1.905
» | —2.81
Tl 1357
0.5

Subsequent training steps result in weight vector adjustment as below:

22

Intelligent Control Systems

Step 2
f(net?) = —0.077
1.828
5 _ | —2.772
| 1512
0.616

Step 3

f(ner) = —0.932

1.828
«_ | =370
| 244

~0.783

Comparison of learning using discrete and continuous activation func-
tions indicates that the weight adjustments are tapered for continuous f(net)
but are generally in the same direction.

Perceptron Learning Rule

For the perceptron learning rule, the learning signal is the difference be-
tween the desired and actual neuron’s response (Rosenblatt 1958). Thus, learning
is supervised and the learning signal is equal to

A
r=d;,— o

where o; = sgn(wix), and d; is the desired response as shown in Figure below:

23

Intelligent Control Systems

Weight adjustments in this method, Aw; and Aw;, are obtained as follows
Aw; = ¢ [d; — sgn(wix)] x
Aw; =cld; —sgn(wix)|x;, forj=1,2,...,n
Note that this rule is applicable only for binary neuron response -
Under this rule, weights are adjusted if and only if o; is incorrect. _
Error as a necessary condition of learning is inherently included in this training

rule. Obviously, since the desired response is either 1 or —1, the weight
adjustment reduces to

Aw; = £2cx
where a plus sign is applicable when d; = 1, and sgn(w'x) = —1, and a minus
sign is applicable when d; = —1, and sgn(w'x) = 1.
The weight adjustment is inherently zero when the desired and actual responses
agree.
Example 2

This example illustrates the perceptron learning rule of the network shown
in Figure below. The set of input training vectors is as follows:

1 0 —1
-2 1.5 1

= of> 2T |-0s5]" ¥ | o5
~1 -1 ~1

and the initial weight vector w' is assumed identical as in Example 1. The
learning constant is assumed to be ¢ = 0.1. The teacher’s desired responses
for x4, x5, X3 are d; = —1,d, = —1, and d; = 1, respectively. The learning
according to the perceptron learning rule progresses as follows.

Step 1 Input is x,, desired output is d;:

net' =w'x; =[1 -1 0 05] =25

1
-2
0
—1

24

Intelligent Control Systems

Correction in this step is necessary since d; # sgn(2.5). We thus obtain
updated weight vector

w2 = w! +0.1(—-1 - 1)x,

Plugging in numerical values we obtain

1 1 0.8

2 _ | —1 _ -2 _ | 06
w 0 0.2 0 0

0.5 -1 0.7

Step 2 Input is x,, desired output is d,. For the present weight vector w?
we compute the activation value ner? as follows:

0.8
nef =wix, = [0 15 —05 —1]| 0% =-16

0.7
Correction is not performed in this step since d, = sgn(—1.6)

Step 3 Input is X,, desired output is d;, present weight vector is w°.
Computing net®> we obtain:
0.8
net® =w'x;=[-1 1 05 -1] _3'6 = ~-2.1
0.7

Correction is necessary in this step since d; # sgn(—2.1). The updated

weight values are
& W= w 0130 + 1xg

or
0.8 -1 0.6
.| -os 1| |-04
=10 [T02] 0517 | o1
07] 1 0.5

This terminates the sequence of learning steps unless the training set is
recycled. It is not a coincidence that the fourth component of x;, x,, and x;,

25

Intelligent Control Systems

Summary of Learning Rules
Table 1 provides the summary of learning rules and of their properties.

Single weight
Leaming adjustment Initial Neuron Neuron
rule Aw; weights Leamning characteristics /Layer
Hebbian COXj 0 U Any Neuron
Jj=L2...,n
Perceptron ¢ [d,- — sgn (W?X)] x; Any S Binary Neuron
J=1L2 ..,n bipolar, or
Binary
unipolar*
Delta c(d; — 0)f"(nety)x; Any S Continuous Neuron
j=1L2...,n
Widrow-Hoff old; — wfx)xj Any S Any Neuron
Jj=12,..,n
Correlation cdixy 0 S Any Neuron
j=1,2..,n
Winner-take-all ~ Aw,,; = a(x; — wy) Random U Continuous ~ Layer of
m-winning neuron Normalized D neurons
number
i=L2 ...,n
Outstar B(d; ~ wy) 0 S Continuous ~ Layer of
i=1,2,..,p P neurons

¢, @, B are positive learning constants
S— supervised leaming, U— unsupervised leaming
- "— Aw; not shown

26

