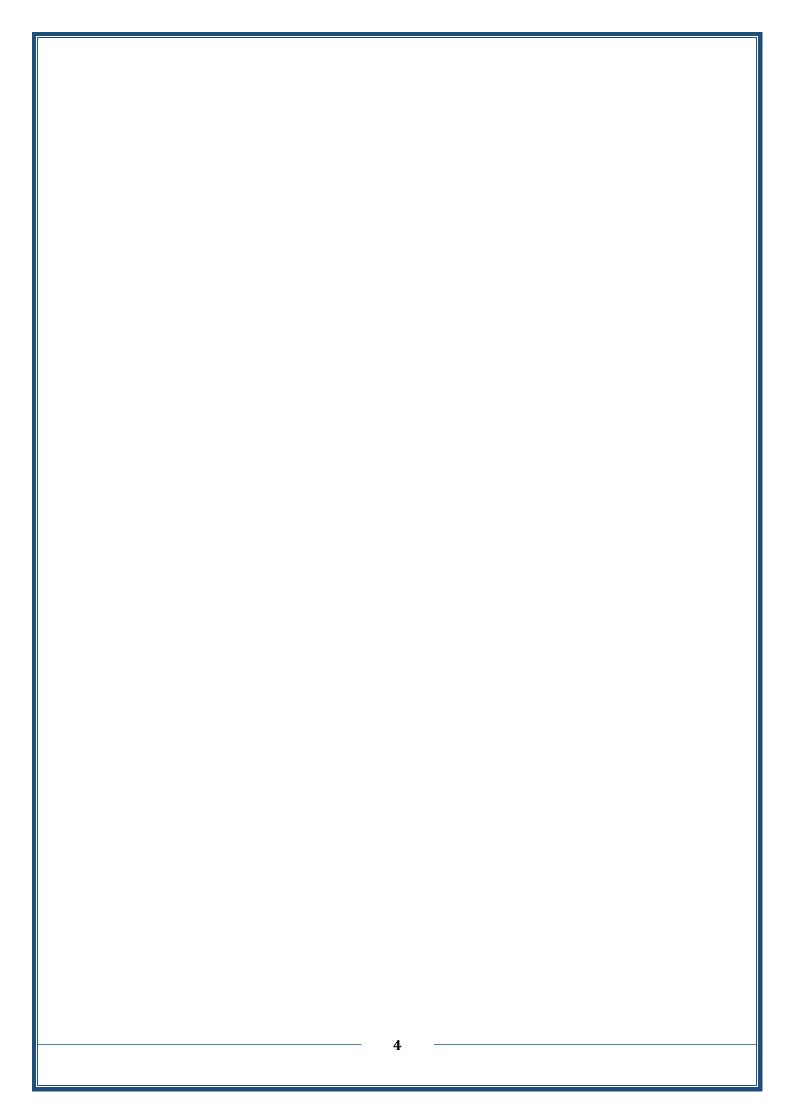
Course Description Form

1. Course Name: **Engineering Analysis** 2. Course Code: **EANA1329** 3. Semester / Year: 1st Semester 4. Description Preparation Date: 8/2/2024 5. Available Attendance Forms: Presence 6. Number of Credit Hours (Total) / Number of Units (Total) 2/45 7. Course administrator's name (mention all, if more than one name) Name: Luay Thamir Rasheed Email: <u>luay.t.rasheed@uotechnology.edu.iq</u> 8. Course Objectives **Course Objectives** Learn how to use the power series method to solve ordinary differential equations. • Studying complex analysis methods, including the analyzability of functions, their integration, and their contribution to control theory in systems. Methods for solving partial differential equations and their applications in engineering. 9. Teaching and Learning Strategies Strategy Lectures. Tutorial. Quizzes. 10. Course Structure Week Hours Required Unit or subject name Learning **Evaluation** Learning method method **Outcomes**

1-2	6		Engineering	analysis	Lectur	Discuss	and
			definition.		es	evaluate	
						homework	
			Application	of			
			engineering analys	is.			
3-4	6		Power series solu		Lectures	Quiz	
			•	ferential			
5-6	6		equations.	1	Lastranas	Discuss a	اه مه دا
3-0	0		Legendre's polyno	omiai.	Lectures	evaluate	and
						homework	
7-8	6		Frobenius method.		Lectures	Quiz	
9-10	6		Bessel function.	1		Discuss	and
9-10	0		bessel function.		Lectures	evaluate	and
						homework	
11	3		Introduction to	complex	Lectures	Discuss	and
11	3		number	complex	Lectures	evaluate	una
						homework	
12-13	6		Function of c	complex	Lectures	Quiz	
			variable	1			
14-15	6		Integration of o	complex	Lectures	Discuss	and
			number			evaluate	
						homework	
11 Course Evaluation							

11. Course Evaluation


20% documented exam

5% Quizzes

5% reports and homework

12. Learning and Teaching Resources

Required textbooks (curricular books, if any)	Higher engineering mathematics by Jo
,	Bird, Fifth Edition 2006
Main references (sources)	Advanced engineering mathematics
,	Erwin Kreyszig, Tenth Edition 2011
Recommended books and references (scientific	
journals, reports)	
Electronic References, Websites	

