
Operational Amplifiers
• An operational amplifier (called op-amp) is a specially-designed amplifier in 

bipolar or CMOS (or BiCMOS) with the following typical characteristics:
– Very high gain (10,000 to 1,000,000)
– Differential input
– Very high (assumed infinite) input impedance
– Single ended output
– Very low output impedance
– Linear behavior (within the range of VNEG < vout < VPOS

• Op-amps are used as generic “black box” building blocks in much analog 
electronic design
– Amplification
– Analog filtering
– Buffering
– Threshold detection

• Chapter 2 treats the op-amp as a black box;  Chapters 8-12 cover details of op-
amp design
– Do not really need to know all the details of the op-amp circuitry in order to use it



Generic View of Op-amp Internal Structure
• An op-amp is usually comprised of at least three different amplifier stages (see figure)

– Differential amplifier input stage with gain a1(v+ - v-) having inverting & non-inverting inputs
– Stage 2 is a “Gain” stage with gain a2 and differential or singled ended input and output
– Output stage is an emitter follower (or source follower) stage with a gain = ~1 and single-

ended output with a large current driving capability
• Simple Op-Amp Model (lower right figure):

– Two supplies VPOS and VNEG are utilized and always assumed (even if not explicitly shown)
– An input resistance rin (very high)
– An output resistance rout (very low) in series with output voltage source vo

– Linear Transfer function is vo = a1 a2(v+ - v-) = Ao(v+ - v-) where Ao is open-loop gain
– vo is clamped at VPOS or VNEG if Ao (v+ - v-) > VPOS or < VNEG, respectively



Ideal Op-amp Approximation
• Because of the extremely high voltage gain, high 

input resistance, and low output resistance of an 
op-amp, we use the following ideal assumptions:

– The saturation limits of v0 are equal VPOS & VNEG

– If (v+ - v-) is slightly positive, v0 saturates at VPOS; 
if (v+ - v-) is slightly negative, v0 saturates at VNEG

– If v0 is not forced into saturation, then (v+ - v-) must 
be very near zero and the op-amp is in its linear 
region (which is usually the case for negative 
feedback use)

– The input resistance can be considered infinite 
allowing the assumption of zero input currents

– The output resistance can be considered to be zero, 
which allows vout to equal the internal voltage v0

• The idealized circuit model of an op-amp is shown 
at the left-bottom figure

• The transfer characteristic is shown at the left-top
• Op-amps are typically used in negative feedback 

configurations, where some portion of the output 
is brought back to the negative input v-



Linear Op-amp Operation:  Non-Inverting Use
• An op-amp can use negative feedback to set 

the closed-loop gain as a function of the 
circuit external elements (resistors), 
independent of the op-amp gain, as long as the 
internal op-amp gain is very high

• Shown at left is an ideal op-amp in a non-
inverting configuration with negative 
feedback provided by voltage divider R1, R2

• Determination of closed-loop gain:
– Since the input current is assumed zero, we can 

write v- = R1/(R1 + R2)vOUT

– But, since v+ =~ v- for the opamp operation in 
its linear region, we can write

v- = vIN = R1/(R1 + R2)vOUT

or, vOUT = ((R1 + R2)/R1)vIN

• We can derive the same expression by writing  
vOUT = A(v+- v-) = A{vIN – [R1/(R1 + R2)] vOUT} 

and solving for vOUT with A>>1
Look at Example 2.1 and plot transfer curve.



The Concept of the Virtual Short
• The op-amp with negative feedback forces the two inputs v+ and v- to have the same 

voltage, even though no current flows into either input.
– This is sometimes called a “virtual short”
– As long as the op-amp stays in its linear region, the output will change up or down until v- is 

almost equal to v+
– If vIN is raised, vOUT will increase just enough so that  v- (tapped from the voltage divider) 

increases to be equal to v+ (= vIN)
• In vIN is lowered, vOUT lowers just enough to make v- = v+

– The negative feedback forces the “virtual short” condition to occur
• Look at Exercise 2.4 and 2.5
• For consideration:

– What would the op-amp do if the feedback connection were connected to the v+ input and vIN
were connected to the v- input?

• Hint:  This connection is a positive feedback connection!



Linear Op-amp Operation:  Inverting Configuration
• An op-amp in the inverting configuration (with 

negative feedback) is shown at the left
– Feedback is from vOUT to v- through resistor R2
– vIN comes in to the v- terminal via resistor R1
– v+ is connected to ground

• Since v- = v+ = 0 and the input current is zero, 
we can write

– i1 = (vIN – 0)/R1 = i2 = (0 – vOUT)/R2   or,
vOUT = - (R2/R1) vIN

• The circuit can be thought of as a resistor 
divider with a virtual short (as shown below)

– If the input vIN rises, the output vOUT will fall just 
enough to hold v- at the potential of v+ (=0)

– If the input vIN drops, vOUT will rise just enough 
to force v- to be very near 0

• Look at Example 2.2 and Exercises 2.7-2.10



Input Resistance for Inverting and Non-inverting Op-amps

• The non-inverting op-amp configuration of slide 2-4 has an apparent input resistance of 
infinity, since iIN = 0 and RIN = vIN/iIN = vIN/0 = infinity

• The inverting op-amp configuration, however, has an apparent input resistance of R1
– since  RIN = vIN/iIN = vIN/[(vIN – 0)/R1] = R1



Op-amp Voltage Follower Configuration
• The op-amp configuration shown at left is a 

voltage-follower often used as a buffer amplifier
– Output is connected directly to negative input 

(negative feedback)
– Since v+ = v- = vIN, and vOUT = v-, we can see by 

inspection that the closed-loop gain Ao = 1
– We can obtain the same result by writing

vOUT = A (vIN – vOUT)     or 
vOUT/vIN = A/(1 + A) = 1 for A >> 1

• A typical voltage-follower transfer curve is 
shown in the left-bottom figure for the case VPOS 
= +15V and VNEG = -10V

– For vIN between –10 and +15 volts, vOUT = vIN

– If vIN exceeds +15V, the output saturates at VPOS

– If vIN < -10V, the output saturates at VNEG

• Since the input current is zero giving zero input 
power, the voltage follower can provide a large 
power gain

• Example 2.3 in text.



Op-amp Difference Amplifier
• The “difference amplifier” shown at the left-top 

combines both the inverting and non-inverting 
op-amps into one circuit

– Using superposition of the results from the two 
previous cases, we can write

– vOUT = [(R1 + R2)/R1]v1 – (R2/R1)v2

– The gain factors for both inputs are different, 
however

• We can obtain the same gain factors for both v1
and v2 by using the modified circuit below

– Here the attenuation network at v1 delivers a 
reduced input v+ = v1(R2/(R1 + R2))

– Replacing v1 in the expression above by the 
attenuation factor, gives us

vOUT = (R2/R1)(v1 – v2)
• The difference amplifier will work properly if 

the attenuation network resistors (call them R3 
& R4) are related to the feedback resistors R1 & 
R2 by the relation R3/R4 = R1/R2 (i.e. same 
ratio)



Ex. Difference Amplifier with a Resistance Bridge
• The example of Fig’s 2.14 and 2.15 in the text 

shows a difference amplifier used with a 
bridge circuit and strain gauge to measure 
strain.

• Operation:
– The amplifier measures a difference in 

potential between v1 and v2.  
– By choosing RA = RB = Rg (unstressed 

resistance of Rg1 and Rg2), it is possible to 
obtain an approx linear relationship between 
vOUT and ∆L, where ∆L is proportional to the 
strain across the gauge.

• Design:
– In order for the bridge to be accurate, the input 

resistances of the difference op-amp must be 
large compared to RA, RB,, & Rg 

• Input resistance at v1 (with v2 grounded) is R1 
+ R2 =~ 10 Mohm

• Input resistance at v2 (with v1 grounded) is just 
R1 = 12 K due to the v1-v2 virtual short



Instrumentation Amplifier
• Some applications, such as an 

oscilloscope input, require differential 
amplification with extremely high 
input resistance

• Such a circuit is shown at the left
– A3 is a standard difference op-amp 

with differential gain R2/R1
– A1 and A2 are additional op-amps 

with extremely high input resistances 
at v1 and v2 (input currents = 0)

• Differential gain of input section:
– Due to the virtual shorts at the input of A1 and A2, we can write iA = (v2 – v1) /RA 

– Also, iA flows through the two RB resistors, allowing us to write v02 – v01 = iA(RA + 2 RB)
– Combining these two equations with the gain of the A3 stage, we can obtain

vOUT = (R2/R1)(1 + [2RB/RA])(v1 – v2)
• By adjusting the resistor RA, we can adjust the gain of this instrumentation amplifier



Summation Amplifier
• A summation op-amp (shown at left) can be used 

to obtain a weighted sum of inputs v1…vN
– The gain for any input k is given by RF/Rk

• If any input goes positive, vOUT goes negative 
just enough to force the input v- to zero, due to 
the virtual short nature of the op-amp

– Combining all inputs, we have
vOUT = -RF(v1/R1 + v2/R2 + .. + vN/RN)

– The input resistance for any input k is given by Rk
due to the virtual short between v- and v+

• Example 2.5 – use as an audio preamp with 
individual adjustable gain controls

– Note effect of microphone’s internal resistance



Op-amp with T-bridge Feedback Network
• To build an op-amp with high closed-loop gain may require a high value resistor R2 

which may not be easily obtained in integrated circuits due to its large size
• A compromise to eliminate the high value resistor is the op-amp with T-bridge feedback 

network, shown below
– RA and RB comprise a voltage divider generating node voltage vB = vOUT RB/(RA + RB), 

assuming that R2 >> RA||RB

– Since vB is now fed back to v-, an apparent gain vB/vIN = -(R2/R1) can be written
• Combining these two equations allows us to write vOUT = - (R2/R1)([RA+ RB]/RB)vIN

• Fairly large values of closed-loop gain can be realized with this network without using 
extremely large IC resistors



Op-amp Integrator Network
• Shown below is an op-amp integrator network

– The output will be equal to the integral of the input, as long as the op-amp remains in its linear 
region

– Due to the virtual short property of the op-amp input, we can write i1 = vIN/R1

– This current i1 starts charging the capacitor C according to the relation i1 = C(dvC/dt)
• Since v- remains at GND, the output drops below GND as C charges and the time 

derivative of vOUT becomes the negative of the time derivative of vC
– since vC = 0 - vOUT 

• Combining the above equations, we obtain
– dvOUT/dt = -i1/C = -vIN/R1C

• Solving for vOUT(t) and assuming C is initially uncharged, we obtain
– vOUT(t) = (-1/R1C)  ⁄ vIN dt    where the integral is from 0 to t



Op-amp Integrator Example
• Given an input signal of 4V square wave for 10 

ms duration, what is the integrator output versus 
time for the integrator circuit at the left?

– The current into the capacitor during the square 
wave is constant at 4V/5Kohm = 0.8 mA

– Using the integral expression from the previous 
chart, the capacitor voltage will increase linearly 
in time (1/R1C) 4t = 0.8t V/ms during the square 
wave duration

– The output will therefore reduce linearly in time 
by – 0.8t V/ms during the pulse duration, falling 
from 0 to –8 volts, as shown in the figure at left

– Since at 10 ms the output will be –8 V > VNEG, 
the op-amp will not saturate during the 10 ms 
input pulse



Op-amp Integrator Example with Long Pulse
• Consider a case with an infinitely long 4V pulse

– The capacitor will continue to charge linearly in time, but will eventually reach 10V which will 
force vOUT to –10V (= VNEG) and saturate the op-amp (at 12.5 ms)

– After this time, the op-amp will no longer be able to maintain v- at 0 volts
– Since vOUT is clamped at –10V, the capacitor will continue to charge exponentially with time 

constant R1C until v- = +4V
• During this time the capacitor voltage will be given by

vC(t) = 10 + 4[1 – exp(t1 – t)/R1C] where t1 = 12.5 ms
• At t = t1 , vC = 10 V and at t = infinity, vC = 14 V

– The resulting capacitor and output waveforms are shown below.



Op-amp as a Differentiator
• The two op-amp configurations shown below perform the function of differentiation

– The circuit on the left is the complement of the integrator circuit shown on slide 2-14, simply 
switching the capacitor and resistor

– The circuit on the right differentiates by replacing the capacitor with an inductor
• For the circuit on the left we can write

– i1 = C(dvIN/dt) = i2 = (0 – vOUT)/R2  or  
vOUT = - R2C (dvIN/dt)

• Similarly, for the circuit on the right we can obtain
vOUT = - (L/R1) (dvIN/dt)

• By nature a differentiator is more susceptible to noise in the input than an integrator, since 
the slope of the input signal will vary wildly with the introduction of noise spikes.

• Do exercises 2.23 and 2.25.



Non-Linear Op-amp Circuits
• Op-amps are sometimes used in non-linear open-loop 

configurations where the slightest change in vIN will 
force the op-amp into saturation (VPOS or VNEG)

– Such non-linear op-amp uses are often found in signal 
processing applications

• Two examples of such non-linear operation are shown at 
the left

– Left-top is an open-loop polarity indicator
• If vIN is above or below GND by a few mV, vOUT is forced to 

either positive or negative rail voltage
– Left-bottom is an open-loop comparator

• If vIN is above or below VR by a few mV, vOUT is forced to the 
positive or negative rail voltage



Open-Loop Comparator (Example 2.8 in text)
• Given the open-loop comparator shown at the left 

with VPOS= +12V and VNEG= -12V, plot the 
output waveforms for VR = 0, +2V, and –4V, 
assuming vIN is a 6V peak triangle wave

• The solution is shown at the left
– In (a) the output switches symmetrically from 

VPOS rail to VNEG rail as the input moves above or 
below GND

– In (b) the output switches between the rail voltages 
as the input goes above or below +2 V

– In (c) the output switches between the rail voltages 
as the input varies above or below –4 V

– The output becomes a pulse generator with 
adjustable pulse width

• Do Exercise 2.28.



Schmitt Trigger Op-amp Circuit
• The open-loop comparator from the previous two slides 

is very susceptible to noise on the input
– Noise may cause it to jump erratically from + rail to –

rail voltages
• The Schmitt Trigger circuit (at the left) solves this 

problem by using positive feedback 
– It is a comparator circuit in which the reference voltage is 

derived from a divided fraction of the output voltage, and 
fed back as positive feedback.

– The output is forced to either VPOS or VNEG when the 
input exceeds the magnitude of the reference voltage

– The circuit will remember its state even if the input 
comes back to zero (has memory)

• The transfer characteristic of the Schmitt Trigger is 
shown at the left

– Note that the circuit functions as an inverter with 
hysteresis

– Switches from + to – rail when vIN > VPOS(R1/(R1 + R2))
– Switches from – to + rail when vIN< VNEG(R1/(R1 + R2))



Schmitt Trigger Op-amp Example (2.9 in text)
• Assume that for the Schmitt trigger circuit shown at 

the left, VPOS/NEG = +/- 12 volts, R1 = R2, and vIN is 
a 10V peak triangular signal.  What is the resulting 
output waveform?

• Answer:
– The output will switch between +12 and –12 volts
– The switch to VNEG occurs when vIN exceeds 

VPOS(R1/(R1 + R2)) = +6 volts
– The switch to VPOS occurs when vIN drops below 

VNEG(R1/R1 + R2)) = -6 volts
– See waveforms at left

• Consider the case where we start out the Schmitt 
Trigger circuit with vIN = 0 and vOUT = 0 (a quasi-
stable solution point for the circuit)

– However, any small noise spike on the input will push 
the output either in the + or – direction, causing v+ to 
also go in the same direction, which will cause the 
output to move further in the same direction, etc. until 
the output has become either VPOS or VNEG. 



Non-Ideal Properties of Op-amps:  
Output Saturation and Input-Offset Voltage

Output Saturation Voltage
• Although we have been assuming the op-amp will 

saturate at the supply voltages VPOS and VNEG, in actual 
practice an op-amp circuit will saturate at somewhat 
lower than VPOS and higher than VNEG, due to internal 
voltage drops in the design 

– Emitter-follower output stage (BJT design) will drop a VBE

– CMOS design will have a similar drop

Input-Offset Voltage
• We have been assuming v+ = v- when vOUT = 0.  In actual 

practice, however, there is usually a small input (or 
output) dc offset voltage in order to force vOUT to 0, under 
open-loop operation.

– The input-offset voltage (labeled VIO in the figure at the 
left) can be positive or negative and is usually small 
(anywhere from 1 uV to 10 mV)



Input-Offset Voltage Effect on Output Voltage
• To examine the effect input-offset voltage has on the 

output voltage, consider the non-inverting op-amp
– The gain of the op-amp is (R1 + R2)/R1 = 100
– Assume the input voltage is modeled adequately by a 

source VIO = +/- 10 mV
– Then, we can write that the output voltage is given by

vOUT = (vIN + VIO)(R1 + R2)/R1
= 100 vIN +/- 1 volt

– Thus, a 10 mV input-offset causes a 1V offset in vOUT

• Exercise 2.32:  Show that the above equation applies 
even if VIO is placed in series with the v- input, 
instead of the v+ input.

– Using the virtual short condition, we can write
vOUT[R1/(R1 + R2)] + VIO = vIN or
vOUT = (R1 + R2)/R1)(vIN + VIO)  same as above!

• Exercise 2.33:  What is the output of an inverting op-
amp if the effect of input offset is considered?

– Based on the inverting op-amp circuit of slide 2-6, we 
can write i1 = (vIN – VIO)/R1 = i2 = (VIO – vOUT)/R2

– or,  vOUT = - (R2/R1) vIN + VIO (R1 + R2)/R1



Output-Offset Voltage and Nulling Out Offset
• A parameter called the output-offset voltage may be 

used to represent the internal imbalance of an op-
amp, rather than the input-offset voltage

– The output-offset voltage is defined as the measured 
output voltage when the input terminals are shorted 
together, as shown at the left-top fig.

– The output-offset voltage may be modeled by placing 
a voltage source AoVIO in series with the output 
voltage source Ao(v+ - v-)

• Consequently, the output-offset voltage is essentially the 
input-offset voltage multiplied by the open loop gain.

– Do exercise 2.34
• How can we correct for offset voltage?

– Some op-amps provide two terminals (offset-null 
terminals) for adjusting out the offset voltage

• A potentiometer is connected across the offset null 
terminals with the VNEG supply voltage connected to the 
adjustable center tap

– If the op-amp does not have an internal null 
adjustment provision, an external adjustment similar 
to that shown in Example 2.11 can be provided.

• Look at Exercise 2.36 (error in text)



Effect of Non-zero Input Bias Currents
• In practice op-amps do not actually have zero 

input currents, but rather have very small input 
currents labeled I+ and I- in the figure at the left

– Modeled as internal current sources inside op-amp
– I+ and I- are both the same polarity

• e.g. if the input transistors are NPN bipolar devices, 
positive I+ and I- are required to provide base current

– In order to allow for slightly different values of I+
and I-, we define the term IBIAS as the average of I+
and I-

IBIAS = ½ (I+ + I-)
• Example:  Given the op-amp shown in the bottom 

left figure, derive an expression for vout that 
includes the effect of input bias currents

– Assume I+ = I- = 100 nA
– Using the virtual short condition and KCL, we can 

write vIN/R1 = I- + (0-vOUT)/R2     or
vOUT = - (R2/R1)vIN + I-R2

– Plugging in values gives vOUT = - 20 vIN + 2 mV
– Do exercise 2.38, p. 77



Correcting for Non-zero Input Bias Current
• The effect of non-zero input bias current can 

be zero’ed out by inserting a resistor Rx in 
series with the V+ input terminal (as shown)

– This same correction works for both inverting 
and non-inverting op-amps

– We choose Rx such that the dc component on 
the output caused by I+ exactly cancels the dc 
component on vOUT caused by I-

– One can use either KCL (Kirchhoff’s Current 
Law) or superposition to show that choosing 
Rx = R1 || R2 completely cancels out the dc 
effect of non-zero input bias current

• KCL Method (inverting op-amp at left)
– vIN is applied to R1 and Rx is grounded
– v- = v+ = 0 – I+Rx due to virtual short 
– Apply KCL to v+ input:

(vIN – v-)/R1 = I- + (v- - vOUT)/R2
– Solve for vOUT and substitute –I+Rx for v-

vOUT = - (R2/R1) vIN + I-R2 – I+Rx(R1 + R2)/R1
– Setting the dc bias terms equal yields

Rx = R1 || R2 = R1 R2/(R1 + R2)



Input Offset Current Definition
• Non-zero input bias currents I+ and I- may not 

always be equal (some opamps)
– Variation in bipolar transistor beta may cause 

base currents to non-track, or perhaps there are 
circuit design issues causing non equal offset I

• We define a parameter “input offset current” 
IIO = I+ - I-

– Typical values of IIO are 5-10% (of I-) although it 
can be as high as 50%

• Example 2.13 based on figure at left 
– R1 = 1K, R2 = 20K ohms
– Assuming Ibias = 1 uA and IIO = 100 nA, find I+, 

I-, and the effect of IIO on vout
– Since (I+ + I-)/2 = 1 uA and I+ - I- = 0.1uA, we can 

solve for I+ = 1.05 uA and I- = 0.95 uA
– Using the expression for Vout from slide 2-26 

with Vin = 0 and Rx = R1 || R2 gives us 
– vOUT = R2 (I- - I+) = -IIO R2 = -2 mV

• Do Exercise 2.40



Slew Rate Limitation in an Op-amp
• A real op-amp is limited in its ability to respond instantaneously to an input signal with a 

high rate of change of its input voltage.  This limitation is called the slew rate, referring 
to the maximum rate at which the output can be “slewed”.

– Typical slew rates may be between 1–10 V/µs = 1E6 – 1E7 V/s
– Max slew rate is a function of the device performance of the op-amp components & design
– If the input is driven above the slew rate limit, the output will exhibit non-linear distortion

• Slew rate limitation behavior:  (Example 2.14):
– Assume an inverting op-amp with a gain of –10 has a max slew rate of 1 V/µs and is driven by 

a sinusoidal input with a peak of 1V.  At what input frequency will the output start to show slew 
rate limitation?

• Output has a peak of 10 volts since gain is –10 and input peak is 1 volt
• If the input is given by vIN = Vo sin ωt, the max slope will occur at t=0 and will be given by

d (Vo sin ωt)/dt |(t=0) = ωVo = 2πf Vo
– The max frequency is therefore given by

fmax = slew rate/2πVo = 1E6 V/s / 2π 10V = ~ 16 kHz
– Note:  This surprisingly low max frequency is directly proportional to the slew rate limit spec 

and inversely proportional to the peak output voltage!



Slew Rate Limitation in an Op-amp
Exceeding the slew rate limitation (Example 2.14b):
• If the inverting op-amp from 2.14a (with gain = –10 and slew rate = 1 V/µs) is driven by 

a 16 kHz sinusoidal input with a peak of 1.5V, what is the effect on the output waveform?
– Since we are now exceeding the slew rate limit, the output will be distorted
– Let vOUT = - Vo cos ωt (for visual simplicity) where Vo = 10 x 1.5V = 15V 
– Then dvOUT/dt = ωVo sin ωt
– Above some t = t1 the slew rate will limit the output response

t1 = (1/ω) sin-1 (slew rate/ωVo) = (1/2π 16 kHz) sin–1 (1E6 /2π 16 kHz x 15V) = 7.2 µs
– The resulting waveform is shown below.  At t1 the slew-limited output can’t keep up with the 

input until it catches up at t2, when the cycle starts all over again. 



Frequency Response of an Op-amp
• An open-loop op-amp has a constant gain Ao only at low frequencies, and a continuously 

reducing gain at higher frequencies due to internal device and circuit inherent limits.  
– For a single dominant pole at freq fp, the frequency-dependent gain A(jω) can be written as

A(jω) = Ao/[1 + jω/ωp] = Ao/[1 + jf/ fp] where ωp = 2πfp

– the gain rolls off at 20dB/decade for frequencies above fp, as shown below
• An op-amp may have additional higher frequency poles, as well, but is often described 

over a large frequency range by the dominant pole (as assumed in the figure below)
• The unity gain frequency fo is defined as the frequency where the gain = 1

– For the single dominant pole situation assumed in the figure below, fo can be found by 
extrapolating the 20 dB/decade roll-off to the point where the gain is unity.



Frequency-Dependent Closed-Loop Gain
• The effect of the frequency-dependent open-loop 

gain on the closed-loop gain can easily be found by 
deriving vOUT(jω) as a function of the open-loop 
gain A(jω) in the op-amp configuration shown at the 
left 

vOUT = A(jω) (v+ - v-) 
= A(jω) [vIN – vOUT(R1/(R1 + R2))],  or

vOUT = A(jω)/[1 + A(jω)β] where 
β = R1 / (R1 + R2) is the closed-loop feedback function
– Substituting A(jw) into the above equation gives us 

the complete frequency dependent result for the 
closed loop gain

vOUT/vIN = Ao/[1 + Aoβ + jω/ωp]
= [Ao/(1 + Aoβ)]/[1 + jω/ωp(1 + Aoβ)]

• The dc gain is given by 
– Ao/(1 + Aoβ) = ~ 1/β = (R1 + R2)/R1

• The closed-loop response is seen to contain a single 
pole at ωfb = ωp(1 + Aoβ) >> ωp

– Closed-loop BW = ~ Aoβ x open-loop BW



Gain-Bandwidth Product
• Multiplication of the closed-loop BW by the 

closed-loop gain gives us
[Ao/(1+Aoβ)]ωfb = [Ao/(1+Aoβ)]ωp(1+Aoβ) 

= Aoωp

– which is the open-loop gain-BW product
• For the assumption of a single dominant pole 

and very high Ao, the gain-bandwidth 
product is a constant

• Unity-gain frequency ωo (= 2πfo) is the freq 
where the op-amp response extrapolates to a 
gain of 1

– we can show that ωo = Aoωp (for a system 
with a single dominant pole)

Op-amp Output Current Limit:
• A typical op-amp contains circuitry to limit the output current to a specified 

maximum in order to protect the output stage from damage 
– If a low value load impedance is utilized, the output current limit may be reached 

before the output saturates at the rail voltage, forcing the op-amp to lower gain
– See Example 2.15



Nonlinear Op-Amp Circuits

• Most typical applications require op amp and its 
components to act linearly
– I-V characteristics of passive devices such as resistors, 

capacitors should be described by linear equation 
(Ohm’s Law)

– For op amp, linear operation means input and output 
voltages are related by a constant proportionality (Av
should be constant)

• Some application require op amps to behave in 
nonlinear manner (logarithmic and 
antilogarithmic amplifiers)



Logarithmic Amplifier
• Output voltage is proportional to the logarithm of input voltage
• A device that behaves nonlinearly (logarithmically) should be used 

to control gain of op amp
– Semiconductor diode

• Forward transfer characteristics of silicon diodes are closely 
described by Shockley’s equation
IF = Ise(VF/ηVT)

– Is is diode saturation (leakage) current
– e is base of natural logarithms (e = 2.71828)
– VF is forward voltage drop across diode
– VT is thermal equivalent voltage for diode (26 mV at 20°C)
– η is emission coefficient or ideality factor (2 for currents of same 

magnitude as IS to 1 for higher values of IF)



Basic Log Amp operation
D1

-

+Vin Vo

RL

R1 IF

I1

• I1 = Vin/R1

• IF = - I1

• IF = - Vin/R1 

• V0= -VF = -ηVT ln(IF/IS)

• V0= -ηVT ln[Vin/(R1IS)] 

• rD = 26 mV / IF

• IF < 1 mA (log amps)
• At higher current levels (IF > 1 mA) diodes begin to 

behave somewhat linearly



Logarithmic Amplifier
• Linear graph: voltage gain is very high for low input voltages and 

very low for high input voltages
• Semilogarithmic graph: straight line proves logarithmic nature of 

amplifier’s transfer characteristic
• Transfer characteristics of log amps are usually expressed in terms 

of slope of V0 versus Vin plot in milivolts per decode
• η affects slope of transfer curve; IS determines the y intercept
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Additional Log Amp Variations

• Often a transistor is used as logging element in log amp (transdiode
configuration)

• Transistor logging elements allow operation of log amp over wider current 
ranges (greater dynamic range)

Q1

-

+Vin

Vo = VBE

RL

R1
IE

I1

IC IC = IESe (VBE/VT)

- IES is emitter 
saturation current
- VBE is drop across 
base-emitter junction



Antilogarithmic Amplifier

• Output of an antilog amp is proportional to 
the antilog of the input voltage

• with diode logging element
– V0 = -RFISe(Vin/VT)

• With transdiode logging element
– V0 = -RFIESe(Vin/VT)

• As with log amp, it is necessary to know 
saturation currents and to tightly control 
junction temperature 



Antilogarithmic Amplifier

D1
-

+Vi
n

Vo

RL

R1

IF

I1

Q1
-

+Vi
n

Vo

RL

RF

IFI1IE

(α = 1) I1 = IC = IE



Logarithmic Amplifier Applications

• Logarithmic amplifiers are used in several 
areas
– Log and antilog amps to form analog multipliers
– Analog signal processing

• Analog Multipliers
– ln xy = ln x + ln y
– ln (x/y) = ln x – ln y



Analog Multipliers
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D1

-

+

-

+

RL

Vo

-

+

-

+

R
R

R

R

Vy

Vx

R

R

D2

D3

One-quadrant multiplier: inputs must 
both be of same polarity



Analog Multipliers
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Four quadrants 
of operation

General symbol

Two-quadrant multiplier: one input should have positive voltages, 
other input could have positive or negative voltages
Four-quadrant multiplier: any combinations of polarities on their 
inputs



Analog Multipliers
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Implementation of mathematical 
operations 

Squaring Circuit
Square root Circuit



Signal Processing
• Many transducers produce output voltages that vary nonlinearly with 

physical quantity being measured (thermistor)
• Often It is desirable to linearize outputs of such devices; logarithmic amps 

and analog multipliers can be used for such purposes
• Linearization of a signal using circuit with complementary transfer 

characteristics



Pressure Transmitter
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Pressure transmitter produces an output voltage proportional to
difference in pressure between two sides of a strain gage sensor 



Pressure Transmitter

• A venturi is used to create pressure differential 
across strain gage

• Output of transmitter is proportional to pressure 
differential

• Fluid flow through pipe is proportional to square 
root of pressure differential detected by strain 
gage

• If output of transmitter is processed through a 
square root amplifier, an output directly 
proportional to flow rate is obtained



Precision Rectifiers
• Op amps can be used to form nearly ideal rectifiers (convert ac to 

dc)
• Idea is to use negative feedback to make op amp behave like a 

rectifier with near-zero barrier potential and with linear I/O 
characteristic

• Transconductance curves for typical silicon diode and an ideal 
diode



Precision Half-Wave Rectifier
D1

-

+Vin Vo

RL

R1 I2

I1

RF

D2

I2

I2

Vx

• Solid arrows represent current flow for positive half-cycles of 
Vin and dashed arrows represent current flow for negative 
half-cycles



Precision Half-Wave Rectifier
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• If signal source is going positive, output of 
op amp begins to go negative, forward 
biasing D1
– Since D1 is forward biased, output of op 

amp Vx will reach a maximum level of ~ -
0.7V regardless of how far positive Vin goes

– This is insufficient to appreciably forward 
bias D2, and V0 remains at 0V

• On negative-going half-cycles, D1 is 
reverse-biased and D2 is forward biased
– Negative feedback reduces barrier potential 

of D2 to 0.7V/AOL (~ = 0)
– Gain of circuit to negative-going portions of 

Vin is given by AV = -RF/R1



Precision Full-Wave Rectifier

D1

-

+Vin

R2

R1 I2

I1

-

+ Vo

RL

R5

D2

R3

I2

U1 U2

VA

VB

R4

• Solid arrows represent current flow for positive half-cycles of 
Vin and dashed arrows represent current flow for negative 
half-cycles



Precision Full-Wave Rectifier
• Positive half-cycle causes D1 to become forward-

biased, while reverse-biasing D2
– VB = 0 V 
– VA = -Vin R2/R1
– Output of U2 is V0 = -VA R5/R4 = Vin (R2R5/R1R4)

• Negative half-cycle causes U1 output positive, forward-
biasing D2 and reverse-biasing D1
– VA = 0 V 
– VB = -Vin R3/R1
– Output of U2 (noninverting configuration) is 

V0 = VB [1+ (R5/R4)]= - Vin [(R3/R1)+(R3R5/R1R4)
– if R3 = R1/2, both half-cycles will receive equal gain



Precision Rectifiers

• Useful when signal to be rectified is very low 
in amplitude and where good linearity is 
needed

• Frequency and power handling limitations of 
op amps limit the use of precision rectifiers to 
low-power applications (few hundred kHz)

• Precision full-wave rectifier is often referred to 
as absolute magnitude circuit



ACTIVE FILTERS



Active Filters
• Op amps have wide applications in design of active filters
• Filter is a circuit designed to pass frequencies within a specific 

range, while rejecting all frequencies that fall outside this range
• Another class of filters are designed to produce an output that is 

delayed in time or shifted in phase with respect to filter’s input
• Passive filters: constructed using only passive components 

(resistors, capacitors, inductors)
• Active filters: characteristics are augmented using one or more 

amplifiers; constructed using op amps, resistors, and capacitors only
– Allow many filter parameters to be adjusted continuously and at 

will 



Filter Fundamentals

• Five basic types of filters
– Low-pass (LP)
– High-pass (HP)
– Bandpass (BP)
– Bandstop (notch or band-reject)
– All-pass (or time-delay)



Response Curves
• ω is in rad/s
• l H(jω) l denotes 

frequency-dependent 
voltage gain of filter

• Complex filter response 
is given by 

H(jω) = l H(jω) l <θ(jω)
• If signal frequencies are 

expressed in Hz, filter 
response is expressed 
as l H(jf) l
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Filter Terminology

• Filter passband: range of frequencies a filter will allow 
to pass, either amplified or relatively unattenuated

• All other frequencies are considered to fall into filter’s 
stop band(s)

• Frequency at which gain of filter drops by 3.01 dB from 
that of passband determines where stop band begins; 
this frequency is called corner frequency (fc)

• Response of filter is down by 3 dB at corner frequency 
(3 dB decrease in voltage gain translates to a reduction 
of 50% in power delivered to load driven by filter)

• fc is often called half-power point



Filter Terminology
• Decibel voltage gain is actually intended to be 

logarithmic representation of power gain
• Power gain is related to decibel voltage gain as

– AP = 10 log (P0/Pin)
– P0 = (V0

2/ZL) and Pin = (Vin
2/Zin) 

– AP = 10 log [(V0
2/ZL) /(Vin

2/Zin)]
– AP = 10 log (V0

2Zin /Vin
2ZL)]

– If ZL = Zin, AP = 10 log (V0
2/Vin

2) = 10 log (V0/Vin)2

– AP = 20 log (V0/Vin) = 20 log Av

• When input impedance of filter equals impedance of 
load being driven by filter, power gain is dependent on 
voltage gain of circuit only



Filter Terminology
• Since we are working with voltage ratios, gain is expressed as 

voltage gain in dB
– l H(jω) ldB = 20 log (V0/Vin) = 20 log AV

• Once frequency is well into stop band, rate of increase of 
attenuation is constant (dB/decade rolloff)

• Ultimate rolloff rate of a filter is determined by order of that filter
• 1st order filter: rolloff of -20 dB/decade
• 2nd order filter: rolloff of -40 dB/decade
• General formula for rolloff = -20n dB/decade (n is the order of filter)
• Octave is a twofold increase or decrease in frequency
• Rolloff = -6n dB/octave (n is order of filter)



Filter Terminology
• Transition region: region between relatively flat portion of passband

and region of constant rolloff in stop band
• Give two filter of same order, if one has a greater initial increase in 

attenuation in transition region, that filter will have a greater 
attenuation at any given frequency in stop band

• Damping coefficient (α): parameter that has great effect on shape 
of LP or HP filter response in passband, stop band, and transition 
region (0 to 2)

• Filters with lower α tend to exhibit peaking in passband (and 
stopband) and more rapid and radically varying transition-region 
response attenuation

• Filters with higher α tend to pass through transition region more 
smoothly and do not exhibit peaking in passband and stopband



LP Filter Response
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Filter Terminology
• HP and LP filters have single corner frequency
• BP and bandstop filters have two corner frequencies (fL and fU) and 

a third frequency labeled as f0 (center frequency)
• Center frequency is geometric mean of fL and fU
• Due to log f scale, f0 appears centered between fL and fU

f0 = sqrt (fLfU)
• Bandwidth of BP or bandstop filter is 

BW = fU – fL
• Also, Q = f0 / BW (BP or bandstop filters)
• BP filter with high Q will pass a relatively narrow range of 

frequencies, while a BP filter with lower Q will pass a wider range of 
frequencies

• BP filters will exhibit constant ultimate rolloff rate determined by 
order of the filter



Basic Filter Theory Review
• Simplest filters are 1st order LP and HP RC sections

– Passband gain slightly less than unity
• Assuming neglegible loading, amplitude response (voltage 

gain) of LP section is
H(jω) = (jXC) / (R + jXC)
H(jω) = XC/sqrt(R2+XC

2) <-tan-1 (R/XC)
• Corner frequency fc for 1st order LP or HP RC section is 

found by making R = XC and solving for frequency
R = XC = 1/(2πfC)
1/fC = 2πRC
fC = 1/(2πRC)

• Gain (in dB) and phase response of 1st order LP
H(jf) dB = 20 log [1/{sqrt(1+(f/fc)2}] <-tan-1 (f/fC)

• Gain (in dB) and phase response of 1st order HP
H(jf) dB = 20 log [1/{sqrt(1+(fc/f)2}] <tan-1 (fC/f)
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