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 Chapter One  

Introduction  

1.1 Basic Elements of DSP Systems:  

Fig. (1.1) shows a typical DSP system. The analog input Signal might be variations in voltage, 

temperature pressure or light intensity. If the signal is not inherently electrical, it is first 

converted to a proportional voltage fluctuation by a suitable transducer. Very often, the first 

stage in the chain is an analog filter , designed to limit the frequency range of the signal prior to 

sampling. The final processing stage is another analog filter, designed to remove sharp 

transitions from the D/A output.  

 

In contrast to the above a direct analog processing of analog signals is much simpler since it 

involves only a signal processor. It is therefore natural to ask why do we go to the DSP system? 

There are several good reasons: 

1- Rapid advances in integrated circuit design and manufacture are producing more powerful 

DSP systems on a single chip at decreasing size and cost. 

2- Digital processing is inherently stable and reliable. 
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3- In many cases DSP is used to process a number of signals simultaneously. This may be done 

by using a technique known as " TDM " time-division-multiplexing 

4 - Digital implementation permits easy adjustment of processor characteristics during 

processing, such as that needed in implementing adaptive circuits. 

Today, digital signal processing techniques are increasingly replaced analog signal processing 

methods in many fields such as spectral analysis, speech recognition, radar and sonar signal 

processing, biomedical signal analysis, digital filtering, digital modems, data encryption, 

geophysical signal processing and engine control. 

 

☆☆The main disadvantage associated with DSP is the limited range of frequencies available for 

processing. 

1.2 Sampling and A/D Conversion: - 

The sampling process is confirmed by Shannon's famous Sampling theorem which may be 

stated as follows : 

An analog signal containing frequencies up to (fm) Hz completely represented by 

regularly-spaced samples, provided the sampling rate is at least (2 fm) samples per second 

i.e    (fs > 2 fm). 

Figure1.2: sampled signal 
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Fig (1.3) shows the effects of sampling signal spectrum. 

 

Fig (1.3) 

The maximum frequency contained in the analog signal (fm) is known as Nyquist frequency. 

The minimum sampling rate (fs=2fm) which can be used without overlapping is known as the 

Nyquist rate. 

In most electronic DSP applications, performed by an A/D converter which also transforms the 

stream of samples into a binary code. 

Fig(1.4) 
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1.3 Discrete -Time Signals (sequences):- 

In digital signal processing , signals are represented as sequence of numbers called "samples" A 

sample value of a typical discrete- time signal or sequence is denoted as X [n] with the 

argument "n" being an integer in the range (-∞ and ∞). It should be noted that x[n] is defined 

only for integer values of "n" and undefined otherwhere.  The most. common basic sequences 

are described next: 

• Unit Sample Sequence: -  

𝜹[𝒏] = {
𝑨      𝒏 = 𝟎
𝟎       𝒏 ≠ 𝟎

 

 

𝜹[𝒏 − 𝒌] = {
𝑨      𝒏 = 𝒌
𝟎       𝒏 ≠ 𝒌

 

 

• Unit Step Sequence: - 

𝒖[𝒏] = {
𝑨      𝒏 ≥ 𝟎
𝟎       𝒏 < 𝟎

 

 

𝒖[𝒏 − 𝒌] = {
𝑨      𝒏 ≥ 𝒌
𝟎       𝒏 < 𝒌

 

 

Note that    𝑢[𝑛] = ∑ 𝛿[𝑘]𝑛
𝑘=−∞     and  𝛿[𝑛] = 𝑢[𝑛] − 𝑢[𝑛 − 1]  
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• Unit Ramp Sequence: -  

𝒓[𝒏] = 𝒏 𝒖[𝒏] 

 

 

 

• Exponential Sequence: -  

𝑿[𝒏] = 𝑨𝒆ᵝ𝒏 

 

 

• Sinusoidal Sequence: - 

Analog sine   𝑥(𝑡) = sin 𝑤𝑡 

Discrete sine  𝑥[𝑛] = sin(𝑤𝑛𝑇𝑠) 

Let  wTs=Ω 

Where   w=2 π fm 

Ts=1/fs 

 

Note that  𝑥𝑑[𝑛] = 𝑥𝑎(𝑡)ⅼ𝑡=𝑛𝑇𝑠
  , usually we take  Ts=1sec. 

Example 1: find expressions for the various signals shown below 
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Solution: 

a) x[n]= -2 u[-n-3] 

b) x[n]= 4 u[n+2] 

c) x[n]=8 δ[n-3]-5 δ[n-4] 

d) x[n]= u[n+2]- u[n-4] 

 

 

Example 2: sketch the following signals: 

a) x[n]= e0.2n u[n] 

b) x[n]= cos (
𝜋𝑛

4
) 

c) x[n]= e-n/5 cos[n] 

d) x[n]= 20 (0.9)n u[n] 

solution: 
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1.3.1 Operations on Sequences:  

1. Modulation 

 

 

2. Addition 

 

 

3. Scaling 

 

 

 

 

4. Time Shifting 

 

 

 

Example: consider the following sequences of length (5) defined for ( 0≤n≤4). 

x[n] ={ 3.2   41   36   -9.5   0 } 

y[n] ={ 1.7  -0.5   0    0.8   1 } 

Find  a) x[n] . y[n]  

b) x[n] + y[n] 

c) 
7

2
 x[n] 
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solution: 

x[n] . y[n]={ 5.44   -20.5   0   -7.6   0 } 

x[n]+y[n]={ 4.9     40.5    36   -8.7   1} 

      
7

2
 x[n]={ 11.2   143.5   126  -33.25  0} 

 

Example: Analyze the discrete-time system shown below to determine the sequence y[n]. 

 

 

    

 

Solution: 

y[n]= b0 x[n] +b1 x[n-1] +b2 x[n-2] +y[n-1] 

This formula is known as ((difference equation)) 

 

1.4 Discrete -Time Systems (Digital Processors):- 

The function of a discrete - time system is to process a given input sequence to generate an 

output sequence. 

 

 

 

1.4.1 Classification of Discrete Time Systems: 

The classification of DTS is based on the input - output relation of the system. 
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1- Linear System: It is the system for which the superposition principle always holds. 

  

If y1[n] and y2[n] are the responses to the inputs x1[n] and x2 [n] respectively , then for the 

input    x[n] = α x1[n] +Bx2[n]  gives the output y[n] = α y1[n] +By2[n]   

Example: Test the linearity of the system : 

y [n] =
1

3
 (x [n+1] + x[n] + x [n-1]) 

 

Sol : By applying superposition theory: 

= 
1

3
 (α x1[n+1] +B x2[n+1] + x [n-1] + α x1 [n] + B X2 [n]+ α x1 [n-1] + B x2 [n-1]) 

=
1

3
α (x1[n+1] + x1 [n] + x1 [n-1])+ 

1

3
B (x2[n+1] + x2 [n]+ x2 [n-1] ) 

= α y1[n] +B y2[n] 

The system is linear. 

 

Example: The square -Law device  y[n]= x2[n] 

(α x1[n] +B x2[n])2 = α2 x1
2[n] +2 α B x1[n] x2[n]+ α2 x2

2[n] 

      ≠ α y1[n] +B y2[n] 

The system is not linear. 

 

2- Shift -Invariant System: (Time - invariant system) 

If y[n] is the response to an input x[n] then the response to x [n-n0 ] is y [n-n0] 

 

3- Linear Time-Invariant System: (LTI) 

It is the system that satisfies both the linearity and the time - invariance properties. Such 

systems are mathematically easy to analyze ,and easy to design. 
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4-Static and Dynamic System: 

The system is said to be static or (memoryless) if its output depends up on the present input 

only. 

 

5- Causal System: 

In causal system, the output signal depends only on present and /or previous values of the 

input. The practical signal processors are always causal, because they cannot anticipate the 

future . 

 

6- Invertible System:  

If a digital system with input xIn] gives an output y[n], then its inverse would produce x [n] if fed 

with y [n]. Most practical systems are invertible.  

The LTI systems are also causal and invertible. 

 

Example: Determine the following properties :(linearity, time invariance, causality, invertibility) 

for the systems : 

(a) y [n] = 3x [n] - 4 x [n-1] 

(b) y [n] = 2y [n-1] + x [n+2] 

(c) y [n] =n x[n] 

(d) y [n] = Cos (x[n]) 

 

Solution: (a) linear, time invariance, causal, invertible . 

(b) linear, time invariance , not causal, invertible. 

(c) linear , time - variance, causal, invertible. 

(d) Non-linear, time invariance , causal, not invertible. 
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Chapter two 

-Time Domain Analysis-  
 

2.1 Introduction: 

In this chapter we develop the basic techniques for describing 

digital signals and in the time domain. Such techniques are: 

impulse response, step response, and digital convolution. 

2.2 The Impulse Response: 

The response of digital system to sequence ( x [n]=δ[n]) is called 

the unit sample response or simply  “the impulse response”, and is 

denoted as (h[n]). 

 

 

Example 1: Find the impulse response of the system :  

y[n]=
1

3
 x[n+1]+ 

1

3
 x[n] + 

1

3
 x [n-1] 

Sol : we set x [n] = δ[n] 

y[n]= h[n] =
1

3
 δ [n+1]+ 

1

3
 δ [n] + 

1

3
 δ [n-1] 

for n=-2 y[n]=
1

3
 δ [-1]+ 

1

3
 δ [-2] + 

1

3
 δ [-3] =0 



for  n=-1  y[n]=
1

3
 δ [0]+ 

1

3
 δ [-1] + 

1

3
 δ [-2] =1/3 

for  n=0  y[n]=
1

3
 δ [1]+ 

1

3
 δ [0] + 

1

3
 δ [-1] =1/3 

for  n=1  y[n]=
1

3
 δ [2]+ 

1

3
 δ [1] + 

1

3
 δ [0] =1/3 

for  n=2  y[n]=
1

3
 δ [3]+ 

1

3
 δ [2] + 

1

3
 δ [1] =0 

for n≤-2  and n≥2 y[n]=0 

 

 

 

Example 2: Find the impulse response for the system shown 

below. Given b=-0.9 

 

Sol: 

y[n]=-0.9 y[n-1] +x[n] 

the impulse response =h[n]= -0.9 h[n-1] +δ[n] 

h[-1]= -0.9 h[-2] +δ[-1]=0+0=0 

h[0]= -0.9 h[-1] +δ[0]=0+1=1=(-0.9)0 

h[1]= -0.9 h[0] +δ[1]=-0.9 =(-0.9)1 

h[2]= -0.9 h[1] +δ[2]=0.81 =(-0.9)2 

h[3]= -0.9 h[2] +δ[3]=-0.729  =(-0.9)3 

h[4]= -0.9 h[3] +δ[4]=0.656   =(-0.9)4 

 

we can also find that h[n]=(-0.9)n u[n] or in general: h[n]= bn u[n] 



2.3 The Step Response: 

The response of a discrete-time system to a unit step sequence 

(x[n]=u[n]) is called the unit step response or simply the “step 

response”, and is denoted as S[n]. 

Example:  

a) Find and sketch the step response for the system shown below. 

Given b=0.8. 

b) Find the response to the rectangular 

pulse input bandlimited by (0≤n≤3). 

Sol:  a) y[n]=0.8 y[n-1] + x[n] 

For n<0 y[n]=0 

For n=0 y[0]=0.8 y[-1] + x[0]=0+1=1 

For n=1 y[1]=0.8 y[0] + x[1]=0.8(1)+1=1.8 

For n=2 y[2]=0.8 y[1] + x[2]=0.8(1.8)+1=2.44 

For n=3 y[3]=0.8 y[2] + x[3]=0.8(2.44)+1=2.952 

For n=∞ y[∞]=1+0.81+0.82+0.83+…….+0.8∞ 

   =0.80+0.81+0.82+0.83+…….+0.8∞ 

=∑ (0.8)𝑛∞
𝑛=0  =

1

1−0.8
=5 =steady state value 

 

 

 

 

 

 



b) y[n]=0.8 y[n-1] +x[n] 

for n<0 y[n]=0 

n=0  y[n]=1 

n=1  y[n]=1.8 

n=2  y[n]=2.44 

n=3  y[n]=2.952 

n=4  y[n]=2.362 

n=5  y[n]=1.89 

 

•  

•  

•  

•  

•  

 

• Note that increasing the value of b will increase the duration 

of the transient (the rise time). 

• Transient response: it is the part of a response that vanishes 

as sample number approaches infinity. 

• Steady state response: it is the part of the response that does 

not vanish as sample number approaches infinity. 

 

 



2.4 Stability & Causality Conditions in Terms of the 

Impulse Response: 

1. A digital system is stable if and only if ,the stability factor 

“S” is finite, i.e. (S <∞).where h[n]=impulse response of 

the system 

𝑺 = ∑ |𝒉[𝒏]|
∞

𝒏=−∞
 

2. A digital system is said to be a causal if and only if, h[n]=0 

for n<0. 

All physical systems are causal in that they do not react until 

a stimulus is applied. 

Example: check the stability and causality of the system shown 

below: 

 

Sol: 

𝑺 = ∑ |𝑩𝒏𝒖[𝒏]|∞
𝒏=−∞ = ∑ |𝑩|𝒏 =  

𝟏

𝟏−|𝑩|
∞
𝒏=𝟎   for |B|<1 

The system is stable for |B|<1  or   -1<B<1 

 

Since h[n]=0 for n<0 the system is causal. 



=x[n]*h[n] 

DSP 
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2.5 Discrete Time Convolution 

We have seen how to characterize LTI processors by their impulse 

or step responses. In practical cases, we need a general computer- 

based method to estimate a system’s response to any form of 

input signal. The method which will do this is known as “digital 

convolution” 

 

 

 

𝒚[𝒏] = ∑ 𝒙[𝒌] 𝒉[𝒏 − 𝒌]
∞

𝒌=−∞
 

Which can be alternately as 𝒚[𝒏] = ∑  𝒙[𝒏 − 𝒌]  𝒉[𝒌]∞
𝒌=−∞  

 

 



Example 1: convolution of two finite-duration sequence:       

𝑥[𝑛] = {
1      𝑓𝑜𝑟  − 1 ≤ 𝑛 ≤ 1
0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ℎ[𝑛] = {
1      𝑓𝑜𝑟  − 1 ≤ 𝑛 ≤ 1
0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Sol: 

 

 

 

y[n]=𝑥[𝑛] ∗ ℎ[𝑛] =∑ 𝒙[𝒌] 𝒉[𝒏 − 𝒌]∞
𝒌=−∞  

for  n=-3  y[-3]=𝑥[−1] ℎ[−2] + 𝑥[0] ℎ[−3] + 𝑥[1] ℎ[−4]=0 

for  n=-2  y[-2]=𝑥[−1] ℎ[−1] + 𝑥[0] ℎ[−2] + 𝑥[1] ℎ[−3]=1 

for  n=-1  y[-1]=𝑥[−1]  ℎ[0] +  𝑥[0]  ℎ[−1] + 𝑥[1] ℎ[−2]=2 

for  n=0  y[0]=𝑥[−1]   ℎ[1] +   𝑥[0]   ℎ[0] +   𝑥[1] ℎ[−1]=3 

for  n=1  y[1]=𝑥[−1]   ℎ[2] +   𝑥[0]   ℎ[1] +   𝑥[1]   ℎ[0]= 2 

for  n=2  y[2]=𝑥[−1]   ℎ[3] +   𝑥[0]   ℎ[2] +   𝑥[1]   ℎ[1]= 1 

for  n=3  y[3]=𝑥[−1]   ℎ[4] +   𝑥[0]   ℎ[3] +   𝑥[1]   ℎ[2]= 0 

 

 

 

 

 

 

 



Example 2: Find x[n] * h[n] where: 

x[n]=[1 2 3 -1]       

h[n]=[1 -1  2] 

 

 

Sol 1: we can solve the problem numerically as in the previous 

example or by using the graphical method as shown below: 



Sol 2: Also this problem can be solved using the multiplication 

method as shown below: 

x[n]   1   2   3  -1 

h[n]  1 -1  2 

                           2   4   6  -2 

     -1  -2  -3  1  

  1  2   3  -1          

 y[n]= 1  1   3   0   7  -2 

 

**and it can also be solved by using the 4th method tabulation 

method 

 Y[n] Y[-1] Y[0] Y[1] Y[2] Y[3] Y[4] 

= 1 1 3 0 7 -2 

h[0] h[1] h[2]

x[-1] 1 -1 2

x[0] 2 -2 4

x[1] 3 -3 6

x[2] -1 1 -2



Example: convolution of an infinite -duration sequence with a 

finite -duration sequence . Given 

𝑥[𝑛] = {
(𝑛 + 1)      𝑓𝑜𝑟 0 ≤ 𝑛 ≤ 2
0                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         

   ℎ[𝑛] = 𝑎𝑛𝑢[𝑛] 

Sol: 

𝑦[𝑛] = ∑ 𝑥[𝑘]   ℎ[𝑛 − 𝑘]
∞

𝑘=−∞
 

𝑦[𝑛] = ∑ (𝑘 + 1)  𝑎𝑛−𝑘  𝑢[𝑛 − 𝑘]
2

𝑘=0
 

𝑦[𝑛] = 𝑎𝑛 𝑢[𝑛] + 2 𝑎𝑛−1 𝑢[𝑛 − 1] + 3 𝑎𝑛−2 𝑢[𝑛 − 2]  

  

Example: convolution of two infinite -duration sequences 

𝑥[𝑛] = 𝑎𝑛𝑢[𝑛]   ℎ[𝑛] = 𝑏𝑛𝑢[𝑛] 

Sol:    𝑦[𝑛] = ∑ 𝑎𝑘𝑢[𝑘]  𝑏𝑛−𝑘  𝑢[𝑛 − 𝑘]∞
𝑘=−∞  

     =∑ 𝑎𝑘  𝑏𝑛−𝑘 𝑛
𝑘=0 = ∑ 𝑎𝑘  𝑏𝑛𝑏−𝑘 𝑛

𝑘=0 = 𝑏𝑛  ∑ ( 
𝑎

𝑏
 )𝑘   𝑛

𝑘=0  

∴𝑦[𝑛] = 𝑏𝑛  
1−( 

𝑎

𝑏
 )𝑛+1

1−( 
𝑎

𝑏
 )

 

 

2.6 Digital Convolution Properties: 

The convolution operation satisfies several useful properties: 

1. Commutative: x1[n] Ⓧ x2[n] =  x2[n] Ⓧ x1[n] 

2. Associative: ( x1[n] Ⓧ x2[n] ) Ⓧ x3[n] = x1[n] Ⓧ (x2[n] Ⓧ x3[n]) 

3. Distributive: x1[n]Ⓧ(x2[n] +x3[n]) = x1[n] Ⓧx2[n]+ x1[n] Ⓧ x3[n] 

 



2.7 Simple Interconnection Schemes: 

 Two widely used schemes for developing complex LTI 

systems from simple LTI section: 

1. Cascade Connection 

In figure below the two sections are said to be 

connected in cascade. The overall impulse response 

h[n] is given by   

 

 

 

2. Parallel Connection 

The connection scheme of figure below is called 

parallel connection. The impulse response of the 

overall system is given here by: 

 

 

 

 

h[n]=h1[n] Ⓧ h2[n] 

 

h[n]=h1[n]+h2[n] 

 



2.8 Classification of LTI Systems: 

LTI systems are usually classified according to the length of their 

impulse response. If h[n] is of finite length ,(i.e. h[n]=0 for n<N1 

and n>N2 where N2>N1), then the system is known as a “finite 

impulse response” or FIR system. 

While if h[n] of a system is of infinite length then the system is 

known as an “infinite impulse response” or IIR system. 
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3.1 Introduction 

In previous chapter we pointed out that any arbitrary sequence can 

be represented in the time-domain as a weighted linear 

combination of delayed unit sample sequences (δ[n-k]). we 

consider in this chapter an alternate description of a sequence in 

terms of complex exponential sequences of the form (e-jwn) and    

(z-n). This leads to two particularly useful representations of discrete 

sequences and systems in a transform domain: - 

1- Discrete Fourier transform (DFT). 

2- Z-transform. 

 

3.2 The Discrete Fourier Transform: - 

In many signal processing applications, the distinguishing features 

of signals and systems are most easily interpreted in the frequency 

domain. The main analytic tool used to transform from time 

domain (x [n]) to frequency domain (X[k]) is the Fourier transform. 

The DFT is important for two reasons : First, it allows us to  



determine the frequency content of a signal , that is , to perform 

spectral analysis . The second is to perform filtering operations in 

the frequency domain . 

Periodic sequences can be represented in the frequency domain 

by means of a " discrete Fourier Series", which is given by : 

𝑋~[𝑘] = ∑ 𝑥~[𝑛] 𝑒−𝑗2𝜋𝑘𝑛/𝑁

𝑁−1

𝑛=0

 

 where x[n] is a periodic sequence with period (N), and the spectral  

coefficients X͠  [k] are evaluated for (0≤k≤N-1) , i.e X͠  [k]  is also 

periodic with a period N). The inverse of above process which 

allows us to recover the signal from it’s spectrum, is given by:  

𝑥~[𝑛] =
1

𝑁
∑ 𝑋~[𝑘] 𝑒𝑗2𝜋𝑘𝑛/𝑁

𝑁−1

𝑛=0

 

Truly periodic signals are rarely encountered in practical DSP. Non-

periodic (aperiodic) signals with a finite number of nonzero sample 

values are the more Common. 

Let x [n] be aperiodic signal with duration containing 

(M) samples. We will consider it is periodic signal of period (N) 

where N≥ M then: - 

𝑥~[𝑛] = {
𝑥[𝑛]    𝑓𝑜𝑟  0 ≤ 𝑛 ≤ 𝑀 − 1 
0       𝑓𝑜𝑟  𝑀 ≤ 𝑛 ≤ 𝑁 − 1

 

 

 



 

"The sequence X [n] is called the “ periodic extension ”of x[n]. We 

are free to choose the value of (N) , but we must be careful not to 

be too small, because ; if N<M, an overlap then occurs when 

periodic extension is formed . 

Summarizing all the above, we arrive at the desired  

DFT relationship :   

 for 0≤k≤N-1 

𝑋[𝑘] = ∑ 𝑥[𝑛] 𝑒−𝑗2𝜋𝑘𝑛/𝑁

𝑁−1

𝑛=0

 

            =∑ 𝑥[𝑛] cos
2𝜋𝑘𝑛

𝑁
𝑁−1
𝑛=0  - 𝑗 ∑ 𝑥[𝑛] sin

2𝜋𝑘𝑛

𝑁
𝑁−1
𝑛=0  

 

The inverse discrete fourier transform or IDFTis given by: 

𝑥[𝑛] =
1

𝑁
∑ 𝑋[𝑘] 𝑒𝑗2𝜋𝑘𝑛/𝑁

𝑁−1

𝑛=0

 

 

Sometimes we assume 𝑒−𝑗2𝜋/𝑁=WN , thus  𝑒−𝑗2𝜋𝑘𝑛/𝑁 = 𝑊𝑁
𝑛𝑘 

The two equation form the basis of the computer algorithms that 

evaluate the DFT. 

Re X[k] Im X[k] 



Ex: Compute the N-point DFT, were N=3 for the sequence : 

𝒉[𝒏] = {
𝟏

𝟑 
     𝒇𝒐𝒓  𝟎 ≤ 𝒏 ≤ 𝟐

𝟎                𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 

 

Sol:             𝐻[𝑘] = ∑ ℎ[𝑛] 𝑒− 
𝑗2𝜋𝑘𝑛

𝑁3−1
𝑛=0  

𝐻[𝑘] =
1

3
+

1

3
𝑒− 

𝑗2𝜋𝑘
𝑁 +

1

3
𝑒− 

𝑗4𝜋𝑘
𝑁  

𝐻[0] =
1

3
+

1

3
( 1 ) +

1

3
( 1 ) = 1 

𝐻[1] =
1

3
+

1

3
𝑒− 

𝑗2𝜋
3 +

1

3
𝑒− 

𝑗4𝜋
3 = 0 

𝐻[2] =
1

3
+

1

3
𝑒− 

𝑗4𝜋

3 +
1

3
𝑒− 

𝑗8𝜋

3 =0 

𝐻[3] = 1 

 

 



Ex: Compute DFT for the infinite-duration sequence given by: 

h[n]=an u[n] 

Sol:    𝐻[𝑘] = ∑ ℎ[𝑛] 𝑒− 
𝑗2𝜋𝑘𝑛

𝑁𝑁−1
𝑛=0  

𝐻[𝑘] = ∑ 𝑎𝑛 𝑒− 
𝑗2𝜋𝑘𝑛

𝑁

∞

𝑛=0

 

𝐻[𝑘] = ∑(a 𝑒− 
𝑗2𝜋𝑘

𝑁 )𝑛 

∞

𝑛=0

 

𝐻[𝑘] =
1

1 − a 𝑒− 
𝑗2𝜋𝑘

𝑁

 

Note: Sometimes the equation of X[k] includes real plus 

imaginary parts so we convert it into magnitude and phase 

then sketch the magnitude function. 



3.2.1 Properties of DFT: 

1- Linearity:  
 

DFT (Ax1[n] + Bx2[n]) = AX1[k] + BX2[k]  

 

2- Convolution: 

  

DFT (x[n]  ⊗  y[n]) = X[k] . Y[k] 

 

 3- Modulation: 

  

DFT (x[n] . y[n]) = X[k] ⊗ Y[k]  

 

4- Periodicity:  

 

X[k] = X[k+N] 

 

 5- Time Shifting:  

DFT (x[n-a]) = X[k] 𝑒− 
𝑗2𝜋𝑘  𝑎

𝑁  

 

 6- Frequency Shifting: 

 DFT (x[n] 𝑒− 
𝑗2𝜋𝑘  𝑎

𝑁 ) =  X[(k-a)N] ={
𝑥[𝑘 − 𝑎]   𝑎 ≤ 𝑘 ≤ 𝑁 − 1
𝑥[𝑘 − 𝑎 + 𝑁]   0 ≤ 𝑘 ≤ 𝑎

 

7- Parseval's Theorem  

The power in discrete time domain is the same one in the discrete 

frequency domain or  

∑ |𝒙[𝒏]|𝟐
𝑵−𝟏

𝒏=𝟎
=

𝟏

𝑵
 ∑ |𝒙[𝒌]|𝟐

𝑵−𝟏

𝒌=𝟎
  



Ex: prove that DFT of   1. δ[n]=1  

  2. δ[n-n0] =𝑊𝑁
𝑘𝑛0  

Sol:  

𝑋[𝑘] = ∑ 𝑥[𝑛] 𝑒− 
𝑗2𝜋𝑘𝑛

𝑁

∞

𝑛=0

 

1. Since x[n]= δ[n]={
1            𝑛 = 0
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

X[k]= 1 . e0+0+0    =1 

 

2. 𝑋[𝑘] = ∑ 𝛿[n − n0] 𝑒− 
𝑗2𝜋𝑘𝑛

𝑁∞
𝑛=0  =𝑒− 

𝑗2𝜋𝑘𝑛0

𝑁 = 𝑊𝑁
𝑘𝑛0 

 

Ex: Find the power in time and frequency domain for  

x[n]=
1

3
δ(n)  +

1

3
 δ(n −  1)  +

1

3
 δ(n −  2) 

 Sol: The energy in the time domain 

=∑ |𝒙[𝒏]|𝟐𝑵−𝟏
𝒏=𝟎 =(

1

3
)2+(

1

3
)2+(

1

3
)2=

1

3
 

We previously found that x[k]=[1 0 0] 

The energy in the frequency domain =
𝟏

𝑵
 ∑ |𝒙[𝒌]|𝟐𝑵−𝟏

𝒌=𝟎  

=
1

3
 (12+02+02)= 

1

3
  

 



3.3. The inverse DFT (IDFT):  

To transfer the frequency response into the corresponding 

discrete time sequence, we use the following formula:  

𝑥[𝑛] =
1

𝑁
∑ 𝑋[𝑘] 𝑒𝑗2𝜋𝑘𝑛/𝑁

𝑁−1

𝑛=0

 

Ex: compute the IDFT for 𝐻[𝑘] =
1+2 cos

 2𝜋𝑘

𝑁

5
  

Sol: we have ℎ[𝑛] =
1

𝑁
∑ 𝐻[𝑘] 𝑒𝑗2𝜋𝑘𝑛/𝑁𝑁−1

𝑛=0  

Or we can directly find the IDFT from the table 

Since x[k]=
1

5
+

2

5
(

𝑒
𝑗2𝜋𝑘

𝑁 +𝑒
− 

𝑗2𝜋𝑘
𝑁

2
) 

=
1

5
+

1

5
𝑒

𝑗2𝜋𝑘

𝑁 +
1

5
𝑒− 

𝑗2𝜋𝑘

𝑁  

x[n]= 
1

5
𝛿[𝑛] +

1

5
𝛿[𝑛 + 1] +

1

5
𝛿[𝑛 − 1] 

Ex: Perform the linear convolution with DFT. 

𝑥[𝑛] = {
1   𝑓𝑜𝑟 𝑛 = 0

0.5   𝑓𝑜𝑟 𝑛 = 1
0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  ℎ[𝑛] = {
0.5   𝑓𝑜𝑟 𝑛 = 0
1     𝑓𝑜𝑟 𝑛 = 1
0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

 



Sol: 

𝑋[𝑘] = ∑ 𝑥[𝑛] 𝑒− 
𝑗2𝜋𝑘𝑛

𝑁

1

𝑛=0

 

= x[0]+x[1] 𝑒− 
𝑗2𝜋𝑘

𝑁   

X[k]=1+0.5𝑒− 
𝑗2𝜋𝑘

𝑁    Also  H[k]=0.5+𝑒− 
𝑗2𝜋𝑘

𝑁     

Y[k] = X[k] . H[k] = 0.5+1.25𝑒− 
𝑗2𝜋𝑘

𝑁 + 0.5𝑒− 
𝑗2𝜋𝑘(2)

𝑁  

𝑦[𝑛] = 𝐼𝐷𝐹𝑇 (𝑌[𝑘]) = 0.5𝛿[𝑛] + 1.25 𝛿[𝑛 − 1] + 0.5𝛿[𝑛 − 2]  

 

 

 

 



DSP 

Chapter three 

-Frequency Domain Analysis-  
 

3.3 The Z-Transform 

The Z- transformation does for analysis and design of digital 

systems what the laplace transformation does for analysis and 

design of analog systems. 

The Z- transform of a digital signal x[n] is defined as: 

𝑋(𝑧) = ∑ 𝑥[𝑛] 𝑧−𝑛

∞

𝑛=0

 

The Z- transform and the DFT are closely related  

𝑋(𝑧) = 𝑋[𝑘]ⅼ𝑒 𝑗2𝜋𝑘/𝑁=𝑧  

 

 Ex: Find the Z- transform of the signal shown below: 

 

 

 



Sol:  

𝑋(𝑧) = ∑ 𝑥[𝑛] 𝑧−𝑛

1

𝑛=−1

 

     =
1

3
 𝑍+ 

1

3
+ 

1

3
𝑍−1 

 

Ex: Find the Z- transform of exponentially signal given by: 

𝑥[𝑛] =  𝑎𝑛 𝑢[𝑛] 

Sol:  𝑋(𝑧) = ∑ 𝑥[𝑛] 𝑧−𝑛∞
𝑛=0   = ∑ 𝑎𝑛 𝑧−𝑛∞

𝑛=0 = ∑  (𝑎𝑧−1)𝑛∞
𝑛=0  

By applying the geometric sum formula  

𝑋(𝑧) =
1

1 − 𝑎𝑧−1
  𝑂𝑅  𝑋(𝑧) =

𝑧

𝑧 − 𝑎
   

for|𝑎𝑧−1| < 1. 

This is some geometric sum formula (just for know) 

 

 

 



Note: the Z-transform pairs of some important signals: 

X[n] X(Z) 

δ[n] 1 

δ[n-a] 
𝑧−𝑎 =

1
𝑧𝑎 

u[n] 1

1 − 𝑧−1
=

𝑧

𝑧 − 1
 

an u[n] 1

1 − 𝑎𝑧−1
=

𝑧

𝑧 − 𝑎
 

r[n] 𝑧

(𝑧 − 1)2
 

x[n-a] 𝑧−𝑎 𝑋(𝑧) 

 

3.3.1 Inverse Z-Transform: - 

The inverse transformation of a function X(z) is defined as: 

𝑥[𝑛] =
1

2𝜋𝑗
∮ 𝑋(𝑧) 𝑧𝑛−1𝑑𝑧 

Where the circular symbol on the integral sign denotes a closed 

contour in the complex plane such integration is rather difficult and 

beyond our scope. Fortunately, several simpler approaches are 

available. Two simple methods for the inverse transform 

computation are reviewed in the next two examples. 



Ex: A signal has the z-transform 𝑋(𝑧) =
1

𝑧 (𝑧−1)(2𝑧−1)
  use the 

method of partial fraction to recover the signal x[n]. 

Sol:    𝑋(𝑧) =
𝐴

𝑧
+

𝐵

𝑧−1
+

𝐶

2𝑧−1
 

𝐴 = lim
𝑧→0

  
1

(𝑧 − 1)(2𝑧 − 1)
= 1 

𝐵 = lim   
𝑧→1

1

𝑧(2𝑧 − 1)
= 1 

𝐶 = lim
𝑧→0.5

  
1

𝑧(𝑧 − 1)
= −4 

𝑋(𝑧) =
1

𝑧
+

1

𝑧 − 1
−

4

2𝑧 − 1
 

𝑋(𝑧) =
1

𝑧
+

1

𝑧 − 1
−

2

𝑧 − 0.5
 } ∗ (𝑧 𝑧−1) 

𝑋(𝑧) = 𝑧−1 + 𝑧−1
𝑧

𝑧 − 1
− 𝑧−1 (2)

𝑧

𝑧 − 0.5
 

Referring to the table   

𝑥[𝑛] = 𝛿[𝑛 − 1] + 𝑢[𝑛 − 1] + 2 0.5𝑛−1 𝑢[𝑛 − 1] 

 

 

 

 



Ex: Solve the previous example using long division of the 

numerator by the denominator  𝑋(𝑧) =
1

𝑧 (𝑧−1)(2𝑧−1)
 

Sol: 𝑋(𝑧) =
1

𝑧 (𝑧−1)(2𝑧−1)
=

1

2𝑧3−3𝑧2+𝑧
 

0.5𝑧−3 + 0.75𝑧−4 + 0.875𝑧−5 + ⋯  

2𝑧3 − 3𝑧2 + 𝑧    1 

                     1 − 1.5𝑧−1 + 0.5𝑧−2 

                                             1.5𝑧−1 − 0.5𝑧−2 

                                             1.5𝑧−1 − 2.25𝑧−2 + 0.75𝑧−3 

                                                         1.75𝑧−2 + 0.75𝑧−3 

 

𝑋(𝑧) = 0.5𝑧−3 + 0.75𝑧−4 + 0.875𝑧−5 + ⋯  

𝑥[𝑛] = 0.5𝛿[𝑛 − 3] + 0.75𝛿[𝑛 − 4] + 0.875𝛿[𝑛 − 5] + ⋯  

 

 

 

 

 



3.3.2 Z-Transform Properties: - 

1. Linearity: 

𝐴 𝑥1[𝑛] + 𝐵 𝑥2[𝑛]  ↔ 𝐴 𝑋1(𝑧) + 𝐵 𝑋2(𝑧) 

 

2. Time – Shifting: 

𝑥[𝑛 − 𝑎]  ↔ 𝑋(𝑧) 𝑧−𝑎 

 

3. Convolution: 

 𝑥1[𝑛] ∗   𝑥2[𝑛]  ↔   𝑋1(𝑧) .  𝑋2(𝑧) 

 

4. Differentiation: 

 𝑛 𝑥[𝑛]  ↔ (−𝑧) 
𝑑 𝑋(𝑧)

𝑑𝑧
  

 

5. Multiplication by an exponential sequence: 

𝑎𝑛 𝑥[𝑛] ↔ 𝑋(
𝑧

𝑎
) 

 

 

 

 



Ex: Determine the z-transform of the sequence given by:

   𝒚[𝒏] = (𝒏 + 𝟏) 𝜶𝒏𝒖[𝒏] 

 

Sol:    

𝒚[𝒏] = 𝜶𝒏𝒖[𝒏] + 𝒏 𝜶𝒏𝒖[𝒏] 

𝜶𝒏𝒖[𝒏] ↔  
𝟏

𝟏−𝜶𝒛−𝟏    ,  |𝜶𝒛−𝟏|  < 𝟏 

 ∴ 𝒀(𝒛) =
𝟏

𝟏−𝜶𝒛−𝟏 + (−𝒛)
𝒅

𝒅𝒛
 

𝟏

𝟏−𝜶𝒛−𝟏 

𝒀(𝒛) =
𝟏

𝟏 − 𝜶𝒛−𝟏
+ 

𝜶𝒛−𝟏

(𝟏 − 𝜶𝒛−𝟏)
𝟐
 

𝒀(𝒛) =
𝟏

(𝟏−𝜶𝒛−𝟏)
𝟐        for |𝜶𝒛−𝟏|  < 𝟏 

 

 

 

 



Ex: Perform the linear convolution with z-transform. 

 

 

 

Sol:𝑥[𝑛] ∗ ℎ[𝑛]  ↔  𝑋(𝑧) . 𝐻(𝑧) 

𝑋(𝑧) = ∑ 𝑥[𝑛]𝑧−𝑛 = 1 + 0.5𝑧−1

1

𝑛=0

 

𝐻(𝑧) = ∑ ℎ[𝑛]𝑧−𝑛 = 0.5 + 𝑧−1

1

𝑛=0

 

𝑌(𝑧) = (1 + 0.5𝑧−1) (0.5 + 𝑧−1) 

𝑌(𝑧) = 0.5 + 1.25 𝑧−1 + 0.5𝑧−2 

𝑦[𝑛] = 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 (𝑌[𝑧]) 

𝑦[𝑛] = 0.5𝛿[𝑛] + 1.25 𝛿[𝑛 − 1] + 0.5𝛿[𝑛 − 2] 

 

 

 

 



3.3.3 Z- Plane: - 

The independent variable (z) is a complex variable. Values of (z) can 

be associated with points in a plane called the z-plane. The z-plane 

is an important graphical tool in 

the theory and application of the 

z-transformation. 

   

 

3.3.4 Evaluation of LTI system Response using        

Z-Transform: - 

The output of LTI for input x[n] can be obtained using 

z-transformation: y[n]= Z-1 Y(z)= Z-1 X(z) H(z) 

 

 

 

 

 

Where h[n]=impulse response of the system=𝑦[𝑛]| 𝑥[𝑛]=𝛿[𝑛] 

H(z)=transfer function of the system =Z  h[n] or =
𝑌(𝑧)

𝑋(𝑧)
 

 



Ex: Find the impulse response and the transfer function of 

the following system.  

 

 

 

 

 

 

 

Sol:    𝑦[𝑛] = 𝑏 𝑦[𝑛 − 1] + 𝑥[𝑛] 

𝑌(𝑧) = 𝑏 𝑧−1𝑌(𝑧) + 𝑋(𝑧) 

For the impulse response x[n]=δ[n]      𝑋(𝑧) = 1 

∴ 𝑌(𝑧) = 𝑏 𝑧−1𝑌(𝑧) + 1 

𝐻(𝑧) =
1

1 − 𝑏𝑧−1
 

 

ℎ[𝑛] = 𝑦[𝑛]| 𝑥[𝑛]=𝛿[𝑛] = Z-1 𝐻(𝑧) = 𝑏𝑛 𝑢[𝑛]  

or directly 𝑇. 𝐹. = 𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
= Z h[n] =

1

1−𝑏𝑧−1 

 

 

 

  



3.3.5 Stability Determination Based Z-Transform: - 

A digital signal or an LTI system can always be described using z-

transform as the ratio: - 

𝑋(𝑧) =
𝑁(𝑧)

𝐷(𝑧)
=

𝑘 (𝑧 − 𝑧1)(𝑧 − 𝑧2) …

(𝑧 − 𝑝1)(𝑧 − 𝑝2) …
 

The constant 𝑧1, 𝑧2, 𝑧3… are called the “zeros” of X(z), because they 

are the values of (z) for which X(z)is zero. Conversely 𝑝1, 𝑝2, 𝑝3 … are 

known as the “poles” of X(z). the poles and zeros are either real or 

occur in complex conjugate pairs. “The digital system is stable, if 

and only if, all the poles of the system lie inside the unit circle 

in the z-plane” k=the system gain   

Ex: check the stability of the system given by: 

𝑯(𝒛) =
𝒌 (𝒛 − 𝟏)𝟐

(𝒛 − 𝟎. 𝟑)(𝒛𝟐 − 𝒛 + 𝟎. 𝟓)
 

Sol: 

𝑯(𝒛) =
𝒌 (𝒛 − 𝟏)𝟐

(𝒛 − 𝟎. 𝟑)(𝒛 − 𝟎. 𝟓 + 𝒋𝟎. 𝟓)(𝒛 − 𝟎. 𝟓 − 𝒋𝟎. 𝟓)
 

 

 

 

 

 

 

 

Since all the poles lie inside the unit circle       The system is stable. 

 



3.3.6 Digital System Implementation from its 

Function: - 

Since the z-transform is a linear transformation, the system 

implementation procedure is similar to that in the time domain. 

The most convenient form for system synthesis is the z-transform 

of the general difference equation given by: 

𝑌(𝑧) = ∑ 𝑎𝑘 𝑧
−𝑘  𝑌(𝑧) + ∑ 𝑎𝑘 𝑧

−𝑘 𝑋(𝑧)

𝑏

𝑘=𝑎

𝑀

𝑘=1

 

This equation can be implemented using the following symbols for 

elementary LTI system 

 

 

 

 

 

 

Note:  

  



Ex: Implement the 2nd order recursive filter : 

𝑦[𝑛] = 2 𝑟 cos(𝑤0) 𝑦[𝑛 − 1] − 𝑟2𝑦[𝑛 − 2] + 𝑥[𝑛] − 𝑟 cos(𝑤0) 𝑥[𝑛 − 1] 

Sol: 

𝑌(𝑧) = 2 𝑟 cos(𝑤0) 𝑧−1𝑌(𝑧) − 𝑟2𝑧−2𝑌(𝑧) + 𝑋(𝑧) − 𝑟 cos(𝑤0) 𝑧−1𝑋(𝑧) 

The structure of the filter is shown below  

 

 

Ex: Realize the digital system given by : 

 

𝐻(𝑧) =
𝑧(𝑧 + 1)

(𝑧2 − 𝑧 + 0.5)
 

Sol: 

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
=

𝑧(𝑧 + 1)

(𝑧2 − 𝑧 + 0.5)
  ] ∗

𝑧−2

𝑧−2
 

 

𝑌(𝑧)

𝑋(𝑧)
=

1 + 𝑧−1

1 − 𝑧−1 + 0.5𝑧−2
 

 

𝑌(𝑧)(1 − 𝑧−1 + 0.5𝑧−2) = 𝑋(𝑧)( 1 + 𝑧−1) 

 

𝑌(𝑧) = 𝑋(𝑧) + 𝑧−1𝑋(𝑧) + 𝑧−1𝑌(𝑧) − 0.5𝑧−2𝑌(𝑧) 



 
 

3.4 Frequency Response of LTI Processor :- 

Most discrete time signals encountered in practice can be 

represented as a linear combination of a very large, may be 

infinite  number of sinusoidal discrete time signals of different 

angular frequencies- Thus, knowing the response of the LTI 

system to a single sinusoidal signal, we can determine its 

response to more complicated signals by making use of the 

superpositions property of the system. Since a sinusoidal signal 

can be expressed in terms of an exponential signal, the 

response of the LTI system to an exponential input is of practical 

interest- This leads to the concept of frequency response, a 

transform-domain representation of the LTI discrete time 

system. 

𝐻(𝑒𝑗𝜔) = ∑ ℎ[𝑛] 𝑒−𝑗𝜔𝑛 = 𝐻[𝑘]
|
2𝜋𝑘

𝑁 =𝑤
= 𝐻(𝑧)|𝑧=𝑒𝑗𝑤 = 𝐻(𝑠)|𝑠=𝑗𝑤

∞

𝑛=−∞

 

 



Ex: find and sketch the frequency response of the system shown 

below 

 

 

 

 

 

Sol:   

𝑌(𝑧) = 2𝑋(𝑧) + 0.9𝑧−1𝑌(𝑧) 

 

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
=

2

1 − 0.9𝑧−1
 

 

𝑓𝑟𝑒𝑞. 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝐻(𝑒𝑗𝑤) = 𝐻(𝑧)|𝑧=𝑒𝑗𝑤 

 

∴ 𝐻(𝑒𝑗𝑤) =
2

1 − 0.9𝑒−𝑗𝑤
=

2

1 − 0.9 cos 𝑤 + 𝑗0.9 sin 𝑤
 

 

|𝐻(𝑒𝑗𝑤)| =
2

√(1 − 0.9 cos 𝑤)2 + (0.9 sin 𝑤)22
 

 

 
 

 

 

 

 

 

Note: the studying of the frequency response of the systems 

lead us to determine the behavior of the system with the 

frequencies. 
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