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Course Overview
• Motivating Example
• Review of Lyapunov Stability Theory

– Nonlinear systems and equilibrium points
– Linearization
– Lyapunov’s direct method
– Barbalat’s Lemma, Lyapunov-like Lemma, Bounded Stability

• Model Reference Adaptive Control
– Basic concepts
– 1st order systems
– nth order systems
– Robustness to Parametric / Non-Parametric Uncertainties

• Neural Networks, (NN)
– Architectures
– Using sigmoids
– Using Radial Basis Functions, (RBF)

• Adaptive NeuroControl
• Design Example: Adaptive Reconfigurable Flight Control using 

RBF NN-s
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Motivating Example: Roll Dynamics
(Model Reference Adaptive Control)

• Uncertain Roll dynamics:
– p is roll rate,
– is aileron position 
– are unknown damping, aileron effectiveness

• Flying Qualities Model:
– are desired damping, control effectiveness
– is a reference input, (pilot stick, guidance command)
– roll rate tracking error: 

• Adaptive Roll Control:

ailp ailp L p Lδ δ= +

( )m m
m p mp L p L tδ δ= +

( ) ( ) ( )( ) 0p me t p t p t= − →

ˆ ˆ
ail pK p Kδδ δ= +

ailδ

( ),
ailpL Lδ

( ),m m
pL Lδ

parameter adaptation laws

( )
( )( )

( )
ˆ

, , 0
ˆ ail

ail

p p m
p

m

K p p p

K t p p
δ

δ δ

γ
γ γ

γ δ

⎧ = − −⎪ >⎨
= − −⎪⎩

( )tδ



E. Lavretsky

5

Adaptive Control: Introduction, Overview, and ApplicationsRobust and Adaptive Control Workshop

Motivating Example: Roll Dynamics
(Block-Diagram)
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parameter adaptation loop

desired flying qualities model roll tracking 
error

unknown plant

• Adaptive control provides Lyapunov stability
• Design is based on Lyapunov Theorem (2nd method)
• Yields closed-loop asymptotic tracking with all remaining 

signals bounded in the presence of system uncertainties



Adaptive Control: Introduction, Overview, and ApplicationsRobust and Adaptive Control Workshop

Lyapunov Stability Theory
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Alexander Michailovich Lyapunov
1857-1918 

• Russian mathematician and engineer who 
laid out the foundation of the Stability 
Theory

• Results published in 1892, Russia
• Translated into French, 1907
• Reprinted by Princeton University, 1947
• American Control Engineering Community 

Interest, 1960’s
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Nonlinear Dynamic Systems and 
Equilibrium Points

• A nonlinear dynamic system can usually be 
represented by a set of n differential equations 
in the form:
– x is the state of the system
– t is time

• If f does not depend explicitly on time then the 
system is said to be autonomous:

• A state xe is an equilibrium if once x(t) = xe, it 
remains equal to xe for all future times:

( ), , with ,nx f x t x R t R= ∈ ∈

( )x f x=

( )0 f x=
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Example: Equilibrium Points of a 
Pendulum

• System dynamics:
• State space representation,

• Equilibrium points:

( )2 sin 0M R b M g Rθ θ θ+ + =

( )
1 2

2 2 12 sin

x x
b gx x x

M R R

=

= − −
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Example: Linear Time-Invariant 
(LTI) Systems

• LTI system dynamics:
– has a single equilibrium point (the origin 0) if 

A is nonsingular
– has an infinity of equilibrium points in the null-

space of A:
• LTI system trajectories:
• If A has all its eigenvalues in the left half 

plane then the system trajectories 
converge to the origin exponentially fast

x A x=

0eA x =

( ) ( )( ) ( )0 0expx t A t t x t= −
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State Transformation

• Suppose that xe is an equilibrium point
• Introduce a new variable: y = x - xe

• Substituting for x = y + xe into
• New system dynamics:
• New equilibrium: y = 0, (since f(xe) = 0)
• Conclusion: study the behavior of the new 

system in the neighborhood of the origin

( )x f x=

( )ey f y x= +
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Nominal Motion

• Let x*(t) be the solution of
– the nominal motion trajectory corresponding to initial 

conditions x*(0) = x0

• Perturb the initial condition
• Study the stability of the motion error:

• The error dynamics:
– non-autonomous!

• Conclusion: Instead of studying stability of the 
nominal motion, study stability of the error 
dynamics w.r.t. the origin

( )x f x=

( ) 0 00x x xδ= +

( ) ( )( ) ( )( ) ( )
( ) 0

,

0

e f x t e t f x t g e t

e xδ

∗ ∗= + − =

=

( ) ( ) ( )e t x t x t∗= −
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Lyapunov Stability

• Definition: The equilibrium state x = 0 of 
autonomous nonlinear dynamic system is said to 
be stable if:

• Lyapunov Stability means that the system 
trajectory can be kept arbitrary close to the origin 
by starting sufficiently close to it

( ){ } ( ){ }0, 0, 0 0,R r x r t x t R∀ > ∃ > < ⇒ ∀ ≥ <

( )0x
0

R r

( )0x
0

R r

Stable Unstable
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Asymptotic Stability

• Definition: An equilibrium point 0 is 
asymptotically stable if it is stable and if in 
addition:

• Asymptotic stability means that the equilibrium is 
stable, and that in addition, states started close 
to 0 actually converge to 0 as time t goes to 
infinity

• Equilibrium point that is stable but not 
asymptotically stable is called marginally stable

( ){ } ( ){ }0, 0 lim 0
t

r x r x t
→∞

∃ > < ⇒ =
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Exponential Stability

• Definition: An equilibrium point 0 is 
exponentially stable if:

• The state vector of an exponentially stable 
system converges to the origin faster than 
an exponential function

• Exponential stability implies asymptotic 
stability

( ){ } ( ) ( ), , 0, 0 0 : 0 ,tr x r t x t x e λα λ α −∃ > ∀ < ∧ > ≤
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Local and Global Stability
• Definition: If asymptotic (exponential) stability 

holds for any initial states, the equilibrium point 
is called globally asymptotically (exponentially) 
stable.

• Linear time-invariant (LTI) systems are either 
exponentially stable, marginally stable, or 
unstable. Stability is always global.

• Local stability notion is needed only for nonlinear 
systems.

• Warning: State convergence does not imply 
stability!
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Lyapunov’s 1st Method
• Consider autonomous nonlinear dynamic 

system:
• Assume that f(x) is continuously differentiable
• Perform linearization:
• Theorem

– If A is Hurwitz then the equilibrium is asymptotically 
stable, (locally!)

– If A has at least one eigenvalue in right-half complex 
plane then the equilibrium is unstable

– If A has at least one eigenvalue on the imaginary axis 
then one cannot conclude anything from the linear 
approximation

( )x f x=

( ) ( ). . .

0 higher-order terms

h o t

x

A

f x
x x f x A x

x
=

⎛ ⎞∂
= + ≅⎜ ⎟∂⎝ ⎠
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Lyapunov’s Direct (2nd) Method

• Fundamental Physical Observation
– If the total energy of a mechanical (or 

electrical) system is continuously dissipated, 
then the system, whether linear or nonlinear, 
must eventually settle down to an equilibrium 
point.

• Main Idea
– Analyze stability of an n-dimensional dynamic 

system by examining the variation of a single 
scalar function, (system energy).
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Lyapunov’s Direct Method
(Motivating Example)

• Nonlinear mass-spring-damper system

• Question: If the mass is pulled away and 
then released, will the resulting motion be 
stable?
– Stability definitions are hard to verify
– Linearization method fails, (linear system is 

only marginally stable

3
0 1

damping spring term

0m x b x x k x k x+ + + =

x

m



E. Lavretsky

20

Adaptive Control: Introduction, Overview, and ApplicationsRobust and Adaptive Control Workshop

Lyapunov’s Direct Method
(Motivating Example, continued)

• Total mechanical energy

• Total energy rate of change along the 
system’s motion:

• Conclusion: Energy of the system is 
dissipated until the mass settles down:

( ) ( )2 3 2 2 4
0 1 0 1

0
kinetic potential

1 1 1 1
2 2 2 4

x

V x m x k x k x dx m x k x k x= + + = + +∫

( ) ( ) ( ) 33
0 1 0V x m x x k x k x x x b x x b x= + + = − = − ≤

0x =
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Lyapunov’s Direct Method
(Overview)

• Method
– based on generalization of energy concepts

• Procedure
– generate a scalar “energy-like function 

(Lyapunov function) for the dynamic system, 
and examine its variation in time, (derivative 
along the system trajectories)

– if energy is dissipated (derivative of the 
Lyapunov function is non-positive) then 
conclusions about system stability may be 
drawn
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Positive Definite Functions
• Definition: A scalar continuous function 

V(x) is called locally positive definite if

• If                                   then V(x) is 
globally positive definite

• Remarks
– a positive definite function must have a 

unique minimum
– if Vmin =/= 0 or xmin =/= 0 then use

( ) { } ( )0 0 0 0V x x R V x= ∧ ∀ ≠ ∧ < ⇒ >

( ) { } ( )0 0 0 0V x V x= ∧ ∀ ≠ ⇒ >

( ) ( )min minmin
Rx B
V x V x V

∈
= =

( ) ( )min minW x V x x V= − −
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Lyapunov Functions

• Definition: If in a ball BR the function V(x) 
is positive definite, has continuous partial 
derivatives, and if its time derivative along 
any state trajectory of the system           is 
negative semi-definite, i.e.,          then V(x) 
is said to be a Lyapunov function for the 
system.

• Time derivative of the Lyapunov function

( )x f x=

( ) 0V x ≤

( ) ( ) ( ) ( ) ( ) ( )
1

0, n

n

V x V x
V x V x f x V x R

x x
⎛ ⎞∂ ∂

= ∇ ≤ ∇ = ∈⎜ ⎟∂ ∂⎝ ⎠
…
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Lyapunov Function
(Geometric Interpretation)

• Lyapunov function is a bowl, (locally)
• V(x(t)) always moves down the bowl
• System state moves across contour 

curves of the bowl towards the origin

( )x t
1x

2x

0

( )( )V x t

1V V=

2V V=

3V V=

1 2 3V V V> >
( )x t

1x

2x
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Lyapunov Stability Theorem

• If in a ball BR there exists a scalar function 
V(x) with continuous partial derivatives 
such that                                   then the 
equilibrium point 0 is stable
– If the time derivative is locally negative 

definite             then the stability is asymptotic
• If V(x) is radially unbounded, i.e.,                       , 

then the origin is globally asymptotically stable

• V(x) is called the Lyapunov function of the 
system

( ) ( ): 0 0Rx B V x V x∀ ∈ > ∧ ≤

( ) 0V x <
( )lim

x
V x

→∞
= ∞
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Example: Local Stability

• Pendulum with viscous damping:
• State vector:
• Lyapunov function candidate:

– represents the total energy of the pendulum
– locally positive definite
– time-derivative is negative semi-definite

• Conclusion: System is locally stable

sin 0θ θ θ+ + =

( ) ( )
2

1 cos
2

V x θθ= − +

( ) ( ) ( ) 2

sin

sin 0
V x V x

V x
θ θ

θ θ θ θ θ θ θ
θ θ − −

∂ ∂
= + = + = − ≤

∂ ∂

( )Tx θ θ=



E. Lavretsky

27

Adaptive Control: Introduction, Overview, and ApplicationsRobust and Adaptive Control Workshop

Example: Asymptotic Stability

• System Dynamics:

• Lyapunov function candidate:
– positive definite
– time-derivative is negative definite in the 2-

dimensional ball defined by

• Conclusion: System is locally
asymptotically stable

( )
( )

2 2 2
1 1 1 2 1 2

2 2 2
2 2 1 2 1 2

2 4

2 4

x x x x x x

x x x x x x

= + − −

= + − +

( ) 2 2
1 2 1 2,V x x x x= +

( ) ( ) ( )2 2 2 2
1 2 1 2 1 2, 2 2 0V x x x x x x= + + − <

2 2
1 2 2x x+ <
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Example: Global Asymptotic 
Stability

• Nonlinear 1st order system

• Lyapunov function candidate:
– globally positive definite
– time-derivative is negative definite

• Conclusion: System is globally 
asymptotically stable

• Remark: Trajectories of a 1st order system are 
monotonic functions of time, (why?)

( ) ( ), where: 0x c x x c x= − >
x

( )c x

( ) 2V x x=

( ) ( )2 2 0V x x x xc x= = − <
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La Salle’s Invariant Set Theorems

• It often happens that the time-derivative of 
the Lyapunov function is only negative 
semi-definite

• It is still possible to draw conclusions on 
the asymptotic stability

• Invariant Set Theorems (attributed to La 
Salle) extend the concept of Lyapunov 
function
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Example: 2nd Order Nonlinear 
System

• System dynamics:
– where b(x) and c(x) are continuous functions verifying 

the sign conditions:

• Lyapunov function candidate:
– positive definite
– time-derivative is negative semi-definite

• system energy is dissipated

• system cannot get “stuck” at a non-zero equilibrium

• Conclusion: Origin is globally asymptotically stable

( ) ( ) 0x b x c x+ + =

( )
( )

0, for 0

0, for 0

xb x x

xc x x

> ≠

> ≠

( ) ( )2

0

1,
2

x

V x x x c y dy= + ∫

( ) ( ) 0V x x c x x xb x= + = − ≤

( ) ( )0 0 0exb x x x c x x= ⇔ = ⇒ = − ⇒ =



E. Lavretsky

31

Adaptive Control: Introduction, Overview, and ApplicationsRobust and Adaptive Control Workshop

Lyapunov Functions for LTI 
Systems

• LTI system dynamics:
• Lyapunov function candidate:

– where P is symmetric positive definite matrix
– function V(x) is positive definite 

• Time-derivative of V(x(t)) along the system 
trajectories:

– where Q is symmetric positive definite matrix
– Lyapunov equation:

• Stability analysis procedure:
– choose a symmetric positive definite Q
– solve the Lyapunov equation for P
– check whether P is positive definite

x A x=

( ) TV x x P x=

( ) ( ) 0T T T T T

Q

V x x P x x P x x A P P A x x Q x
−

= + = + = − <

TA P P A Q+ = −
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Stability of LTI Systems

• Theorem
– An LTI system is stable (globally 

exponentially) if and only if for any symmetric 
positive definite matrix Q, the unique matrix 
solution P of the Lyapunov equation is 
symmetric and positive definite

• Remark: In most practical cases Q is 
chosen to be a diagonal matrix with 
positive diagonal elements
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Barbalat’s Lemma: Preliminaries

• Invariant set theorems of La Salle provide 
asymptotic stability analysis tools for 
autonomous systems with a negative 
semi-definite time-derivative of a 
Lyapunov function

• Barbalat’s Lemma extends Lyapunov 
stability analysis to non-autonomous
systems, (such as adaptive model 
reference control)
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Barbalat’s Lemma

• Lemma
– If a differentiable function f(t) has a finite limit as          

and if            is uniformly continuous, then
• Remarks

– uniform continuity of a function is difficult to verify 
directly

– simple sufficient condition:
• if derivative is bounded then function is uniformly continuous

– The fact that derivative goes to zero does not imply 
that the function has a limit, as t tends to infinity. The 
converse is also not true, (in general)

– Uniform continuity condition is very important!

t →∞
( )f t ( )lim 0

t
f t

→∞
=
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Example: LTI System

• Statement: Output of a stable LTI system is 
uniformly continuous in time
– System dynamics:
– Control input u is bounded
– System output:

• Proof: Since u is bounded and the system is 
stable then x is bounded. Consequently, the 
output time-derivative                           is 
bounded. Thus, (using Barbalat’s Lemma), we 
conclude that the output y is uniformly 
continuous in time.

x A x Bu= +

y C x=

( )y C x C A x Bu= = +
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Lyapunov-Like Lemma
• If a scalar function V(x,t) satisfies the 

following conditions
– function is lower bounded
– its time-derivative along the system 

trajectories is negative semi-definite and 
uniformly continuous in time

• Then:
• Question: Why is this fact so important?
• Answer: It provides theoretical foundations 

for stable adaptive control design

( )lim , 0
t

V x t
→∞

=
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Example: Stable Adaptation
• Closed-loop error dynamics of an adaptive 

system
– where e is the tracking error,     is the parameter error, 

and w(t) is a bounded continuous function
• Stability Analysis

– Consider Lyapunov function candidate:
• it is positive definite
• its time-derivative is negative semi-definite

• consequently, e and    are bounded
• since                                        is bounded,        is 

uniformly continuous
• hence:

( ) ( ),e e w t e w tθ θ= − + = −

θ

( ) 2 2,V e eθ θ= +

( ) ( ) ( ) 2, 2 2 2 0V e e e w e w eθ θ θ= − + + − = − ≤
θ

( ) ( ), 4V e e e wθ θ= − − + ( ),V e θ

( ) ( ) ( )2lim 2 lim , 0 lime V e e tθ− = = ⇒
t t t→∞ →∞ →∞
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Uniform Ultimate Boundedness
• Definition: The solutions of                 starting at        

are Uniformly Ultimately Bounded (UUB) 
with ultimate bound B if:

• Lyapunov analysis can be used to show UUB

( ),x f x t=

( ) ( )( ) ( )( )0 0 0 0 00, , 0: ,C T T C B x t C x t B t t T∃ > = > ≤ ⇒ ≤ ∀ ≥ +

( )0 0x t x=

0x ( ) 00,V x C x C< ∀ ≤ ≤

( ) 0V x V=( ) 0BV x V V= <

0x C=0x C C= <

All trajectories starting in large ellipse enter small ellipse within finite time T(C0 ,B)

x B=
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UUB Example : 1st Order System

• The equilibrium point xe is UUB if there 
exists a constant C0 such that for every 
initial state x(t0) in an interval              there 
exists a bound B and a time               such 
that                for all

( )0 0x t C≤

( )( )0,T B x t

( ) ex t x B− ≤ 0t t T≥ +

0ex C+

ex B+

ex B−

t
0t

0ex C−

( )0x t

( )x t
ex

0t T+

T

bound B
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UUB by Lyapunov Extension
• Milder form of stability than SISL
• More useful for controller design in practical 

systems with unknown bounded disturbances:

• Theorem: Suppose that there exists a function 
V(x) with continuous partial derivatives such that 
for x in a compact set
– V(x) is positive definite:
– time derivative of V(x) is negative definite outside of S:

– Then the system is UUB and 

( ) ( )x f x d x= +

nS R⊂

( ) ( ) ( )0, ,V x x R x R x S< ∀ > ≤ ⇒ ∈

( ) 0, 0V x x> ∀ ≠

( ) 0,x t R t t T≤ ∀ ≥ +
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Example: UUB by Lyapunov Extension

• System:

• Lyapunov function candidate:

• Time derivative:

• Time derivative negative outside compact set

• Conclusion: All trajectories enter circle of radius 
R = 3, in a finite time

( )
( )

2 2 2
1 1 2 1 1 2

2 2 2
2 1 2 2 1 2

9

9

x x x x x x

x x x x x x

= − + −

= − − + −

( ) 2 2
1 2 1 2,V x x x x= +

( ) ( ) ( )( )2 2 2 2
1 2 1 1 2 2 1 2 1 2, 2 2 9V x x x x x x x x x x= + = − + + −

( ) { }2 2
1 2 1 2, 0, : 9V x x x x x< ∀ + >

1x

2x( )0x t

R
( )x T
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Adaptive Control
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Introduction
• Basic Ideas in Adaptive Control

– estimate uncertain plant / controller 
parameters on-line, while using measured 
system signals

– use estimated parameters in control input 
computation

• Adaptive controller is a dynamic system 
with on-line parameter estimation
– inherently nonlinear
– analysis and design rely on the Lyapunov 

Stability Theory
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Historical Perspective

• Research in adaptive control started in the 
early 1950’s
– autopilot design for high-performance aircraft

• Interest diminished due to the crash of a 
test flight
– Question: X-?? aircraft tested

• Last decade witnessed the development of 
a coherent theory and many practical 
applications
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Concepts

• Why Adaptive Control?
– dealing with complex systems that have unpredictable parameter 

deviations and uncertainties
• Basic Objective

– maintain consistent performance of a system in the presence of 
uncertainty and variations in plant parameters

• Adaptive control is superior to robust control in dealing 
with uncertainties in constant or slow-varying parameters

• Robust control has advantages in dealing with 
disturbances, quickly varying parameters, and 
unmodeled dynamics

• Solution: Adaptive augmentation of a Robust Baseline 
controller
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Model-Reference Adaptive Control
(MRAC)

plantcontroller

reference model

adaptation law

y

my

e

θ̂

r u

• Plant has a known structure but the parameters are 
unknown

• Reference model specifies the ideal (desired) response 
ym to the external command r

• Controller is parameterized and provides tracking
• Adaptation is used to adjust parameters in the control law
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Self-Tuning Controllers (STC)

plantcontroller

estimator

y

θ̂

r

• Combines a controller with an on-line (recursive) plant 
parameter estimator

• Reference model can be added
• Performs simultaneous parameter identification and 

control
• Uses Certainty Equivalence Principle

– controller parameters are computed from the estimates of the 
plant parameters as if they were the true ones
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Direct vs. Indirect Adaptive Control

• Indirect
– estimate plant parameters
– compute controller parameters
– relies on convergence of the estimated parameters to 

their true unknown values
• Direct

– no plant parameter estimation
– estimate controller parameters (gains) only

• MRAC and STC can be designed using both 
Direct and Indirect approaches

• We consider Direct MRAC design
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MRAC Design of 1st Order Systems

• System Dynamics:
– are constant unknown parameters
– uncertain nonlinear function:

• vector of constant unknown parameters:
• vector of known basis functions:

• Stable Reference Model:
• Control Goal

– find u such that:

( )( )x a x b u f x= + −

,a b

( ), 0m m m m mx a x b r a= + <

( ) ( )( )lim 0mt
x t x t

→∞
− =

( ) ( ) ( )
1

N
T

i i
i

f x x xθ ϕ θ
=

= = Φ∑
( )1

T
Nθ θ θ= …

( ) ( ) ( )( )1
T

Nx x xϕ ϕΦ = …
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MRAC Design of 1st Order Systems 
(continued)

• Control Feedback:
– (N + 2) parameters to estimate on-line:

• Closed-Loop System:
• Desired Dynamics:
• Matching Conditions Assumption

– there exist ideal gains            such that:
– Note: knowledge of the ideal gains is not required, 

only their existence is needed
– consequently:

( )ˆ ˆ ˆT
x ru k x k r xθ= + + Φ

ˆ ˆ ˆ, ,x rk k θ

( ) ( ) ( )ˆ ˆ ˆ T

x rx a b k x b k r xθ θ⎛ ⎞= + + + − Φ⎜ ⎟
⎝ ⎠

m m m mx a x b r= +

x m

r m

a bk a
bk b
+ =
=( ),x rk k

( )ˆ ˆ ˆ
x m x x x x xa b k a a bk a bk b k k b k+ − = + − − = − = ∆

( )ˆ ˆ ˆ
r m r r r r rb k b bk bk b k k b k− = − = − = ∆
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MRAC Design of 1st Order Systems 
(continued)

• Tracking Error:
• Error Dynamics:

• Lyapunov Function Candidate:

– where:                                        is symmetric positive 
definite matrix

( ) ( ) ( )me t x t x t= −

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( )

ˆ ˆ ˆ

ˆ ˆ

T

m x r m m m m

T
m m x m r r

T
m x r

e t x t x t a b k x b k r x a x b r a x

a x x a bk a x b k k r b x

a e b k x k r x

θ

θ θ

θ

θ

∆

⎛ ⎞
⎜ ⎟= − = + + + − Φ − − ±⎜ ⎟⎜ ⎟
⎝ ⎠

= − + + − + − + ∆ Φ

= + ∆ + ∆ + ∆ Φ

( ) ( ) ( ) ( )( ) ( )2 1 2 1 2 1, , , T
x r x x r rV e t k t k t t e b k k θθ γ γ θ θ− − −∆ ∆ ∆ = + ∆ + ∆ + ∆ Γ ∆

0, 0, and 0T
x rγ γ> > Γ = Γ >
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MRAC Design of 1st Order Systems 
(continued)

• Time-derivative of the Lyapunov function

( ) ( )
( ) ( )( )

( )
( )( )

( )( ) ( ) ( )( )

1 1 1

1 1 1

2 1

1 1

ˆ ˆ ˆ, , , 2 2

2

ˆ ˆ ˆ2

ˆ2 2 sgn

ˆ ˆ2 sgn 2 sgn

T
x r x x x r r r

T
m x r

T
x x x r r r

m x x x

T
r r r

V e k k ee b k k k k

e a e b k x k r x

b k k k k

a e b k xe b k

b k r e b k b x e b

θ

θ

θ

θ γ γ θ θ

θ

γ γ θ θ

γ

γ θ θ

− − −

− − −

−

− −

∆ ∆ ∆ = + ∆ + ∆ + ∆ Γ

= + ∆ + ∆ + ∆ Φ

+ ∆ + ∆ + ∆ Γ

⎛ ⎞= + ∆ +⎜ ⎟
⎝ ⎠

⎛ ⎞+ ∆ + + ∆ Φ +Γ⎜ ⎟
⎝ ⎠
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MRAC Design of 1st Order Systems 
(continued)

• Adaptive Control Design Idea
– Choose adaptive laws, (on-line parameter updates) 

such that the time-derivative of the Lyapunov function 
decreases along the error dynamics trajectories

• Time-derivative of the Lyapunov function 
becomes semi-negative definite!

( )

( )

( ) ( )

ˆ sgn

ˆ sgn

ˆ sgn

x x

r r

k x e b

k r e b

x e bθ

γ

γ

θ

= −

= −

= −Γ Φ

( ) ( ) ( ) ( )( ) ( )2

0

, , , 2 0x r mV e t k t k t t a e tθ
<

∆ ∆ ∆ = ≤
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MRAC Design of 1st Order Systems 
(continued)

• Closed-Loop System Stability Analysis
– Since                     then all the parameter 

estimation errors are bounded
– Since the true (unknown) parameters are 

constant then all the estimated parameters 
are bounded

• Assumption
– reference input r(t) is bounded

• Consequently,      and      are bounded

0 and 0V V≥ ≤

mxmx
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MRAC Design of 1st Order Systems 
(continued)

• Since                  then is bounded
• Consequently, the adaptive control 

feedback u is bounded
• Thus,     is bounded, and                   is 

bounded, as well
• It immediately follows that                     is 

bounded
• Using Barbalat’s Lemma we conclude that 

is uniformly continuous function of time

x me x x= −

mx e x= + x

( ) ( )4 mV a e t e t=

( )V t
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MRAC Design of 1st Order Systems 
(completed)

• Using Lyapunov-like Lemma:
• Since                it follows that:
• Conclusions

– achieved asymptotic tracking:
– all signals in the closed-loop system are 

bounded

( )lim , 0
t

V x t
→∞

=

( )22 mV a e t= ( )lim 0
t

e t
→∞

=

( ) ( ) , as mx t x t t→ →∞
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MRAC Design of 1st Order Systems 
(Block-Diagram)

m

m

b
s a+

b
s a+

( )f x

ˆ
xk

r̂k

( )f̂ x

r
mx

x

e

• Adaptive gains:
• On-line function estimation:

( ) ( )ˆ ˆ,x rk t k t

( ) ( ) ( ) ( ) ( )
1

ˆ ˆ ˆ
N

T
i i

i
f x t x t xθ θ ϕ

=

= Φ =∑
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Adaptive Dynamic Inversion 
(ADI) Control
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ADI Design of 1st Order Systems

• System Dynamics:
– are constant unknown parameters
– uncertain nonlinear function:

• vector of constant unknown parameters:
• vector of known basis functions:

• Stable Reference Model:
• Control Goal

– find u such that:

( )x a x bu f x= + +

,a b

( ), 0m m m m mx a x b r a= + <

( ) ( )( )lim 0mt
x t x t

→∞
− =

( ) ( ) ( )
1

N
T

i i
i

f x xθ ϕ θ
=

= = Φ∑ x

( )TN1θ θ θ= …

( ) ( ) ( )( )T1 Nx x xϕ ϕΦ = …
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ADI Design of 1st Order Systems
(continued)

• Rewrite system dynamics:

• Function estimation error:

• On-line estimated parameters:
• Parameter estimation errors

( ) ( ) ( ) ( ) ( )( )
( )

ˆ ˆ ˆ ˆˆ ˆ
a b f x

x a x bu f x a a x b b u f x f x
∆ ∆ ∆

= + + − − − − − −

( ) ( ) ( ) ( ) ( )ˆ ˆ T
f x f x f x x

θ

θ θ
∆

∆ − = − Φ

ˆ ˆˆ, ,a b θ

ˆ ˆˆ , ,a a a b b b θ θ θ∆ − ∆ − ∆ −
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ADI Design of 1st Order Systems
(continued)

• ADI Control Feedback:
– (N + 2) parameters to estimate on-line:
– Need to protect    from crossing zero 

• Closed-Loop System:
• Desired Dynamics:
• Tracking error:
• Tracking error dynamics:
• Lyapunov function candidate

( )( ) ( )1 ˆˆˆ
T

m mu a a x b r x
b

θ= − + − Φ

ˆ ˆˆ, ,a b θ

( )m mx a x b r a x bu xθ= + −∆ −∆ −∆ Φ

m m m mx a x b r= +

b̂

( )me a e a x bu xθ= −∆ −∆ −∆ Φ

me x x−

( ) ( ) ( ) ( )( ) 2 1 2 1 2 1, , , T
a bV e t a t b t t e a b θθ γ γ θ θ− − −∆ ∆ ∆ = + ∆ + ∆ + ∆ Γ ∆
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ADI Design of 1st Order Systems
(continued)

• Time-derivative of the Lyapunov function

• Adaptive laws

( ) ( )
( )( )

( )
( ) ( ) ( )( )

1 1 1

1 1 1

2 1 1 1

ˆ ˆˆ, , , 2 2

2

ˆ ˆˆ2

ˆ ˆˆ2

T
a b

m

T
a b

T
m a b

V e a b ee a a bb

e a e a x bu x

a a bb

a e a a xe b b u e x e

θ

θ

θ

θ γ γ θ θ

θ

γ γ θ θ

γ γ θ θ

− − −

− − −

− − −

∆ ∆ ∆ = + ∆ + ∆ + ∆ Γ

= −∆ −∆ −∆ Φ

+ ∆ + ∆ + ∆ Γ

= + ∆ − + ∆ − + ∆ Γ −Φ

ˆ

ˆ
a

b

a xe

b u e

( )ˆ x eθθ = Γ Φ

γ

γ

=

= ( ) 2, , , 2 0mV e a b a eθ∆ ∆ ∆ = ≤

System 
energy 

decreases
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ADI Design of 1st Order Systems
(stability analysis)

• Similar to MRAC
• Using Barbalat’s Lemma and Lyapunov-

like Lemma:

• Consequently:
• Conclusions

– asymptotic tracking
– all signals in the closed-loop system are 

bounded

( ) ( )2lim , lim 2 0mt t
V x t a e t

→∞ →∞
⎡ ⎤= =⎣ ⎦

( )lim 0
t

e t
→∞

= ( ) ( ) , as mx t x t t→ →∞
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Parameter Convergence ?

• Convergence of adaptive (on-line 
estimated) parameters to their true 
unknown values depends on the reference 
signal r(t)

• If r(t) is very simply, (zero or constant), it is 
possible to have non-ideal controller 
parameters that would drive the tracking 
error to zero

• Need conditions for parameter convergence
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Persistency of Excitation (PE)

• Tracking error dynamics is a stable filter

• Since the filter input signal is uniformly 
continuous and the tracking error 
asymptotically converges to zero, then 
when time t is large:

• Using vector form:

( ) ( )( )
Input

T
m x re t a e b k x k r xθ= + ∆ + ∆ + ∆ Φ

( ) 0T
x rk x k r xθ∆ + ∆ + ∆ Φ ≅

( )( ) 0
x

T
r

k
x r x k

θ

∆⎛ ⎞
⎜ ⎟Φ ∆ ≅⎜ ⎟
⎜ ⎟∆⎝ ⎠
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Persistency of Excitation (PE)
(completed)

• If r(t) is such that                       satisfies 
the so-called “persistent excitation” 
conditions, then the adaptive parameter 
convergence will take place
– PE Condition:

• PE Condition implies that parameter errors 
converge to zero
– for linear systems: m - sinusoids ensure convergence 

of (2 m) - parameters
– not known for nonlinear systems

( )( )TTv x r x= Φ

( ) ( ) 20 0
t T

T
N

t

t T v v d Iα τ τ τ α
+

+∃ > ∀ ∃ > >∫
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ADI vs. MRAC
• No knowledge about
• Adaptive laws are similar
• Both methods yield asymptotic tracking that 

does not rely on Persistency of Excitation (PE) 
conditions

• ADI needs protection against    crossing zero
– If PE takes place and initial parameter        has wrong 

sign then a control singularity may occur
• Regressor vector        must have bounded

components, (needed for stability proof)

sgn b

b̂

( )ˆ 0b

( )xΦ
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Example: MRAC of a 1st-Order 
Linear System

• Unstable Dynamics:
– plant parameters               are unknown to the 

adaptive controller
• Reference Model:
• Adaptive Control:
• Parameter Adaptation:

• Two Reference Inputs:

( )3 , 0 0x x u x= + =

1, 3a b= =

( ) ( )4 4 , 0 0m m mx x r t x= − + =

ˆ ˆ
x ru k x k r= +

( )

( )

ˆ ˆ2 , 0 0

ˆ ˆ2 , 0 0

x x

r r

k x e k

k r e k

= − =

= − =

( )
( ) ( )

4

4sin 3

r t

r t t

=

=
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1st-Order Linear System
MRAC Simulation w/o PE: r(t) = 4

Tracking Error Converges to Zero
Parameter Errors don’t Converge to Zero
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1st-Order Linear System
MRAC Simulation with PE: r(t) = 4 sin(3 t)

Tracking and Parameter Errors Converge to Zero
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Example: MRAC of a 1st-Order 
Nonlinear System

• Unstable Dynamics:
– plant parameters                  are unknown
– nonlinearity:

• known basis functions:
• unknown parameters:

• Reference Model:
• Adaptive Control:
• Parameter Adaptation:

• Reference Input:

( )( ) ( )3 , 0 0x x u f x x= + − =

1, 3a b= =

( ) ( )4 4 , 0 0m m mx x r t x= − + =

( )ˆ ˆ ˆT
x ru k x k r xθ= + + Φ ( )

( )

( ) ( ) 4

ˆ ˆ2 , 0 0

ˆ ˆ2 , 0 0

ˆ ˆ2 , 0 0

x x

r r

k x e k

k r e k

x eθ θ

= − =

= − =

= − Φ =

( ) ( ) 3 3 3sin 3 sin sin sin
2 4 8
t t tr t t ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

( ) ( )Tf x xθ= Φ

( ) ( ) ( ) ( )( )2 20.5 10 0.5 103 sin 2
T

x xx x e e x− + − −Φ =
( )0.01 1 1 0.5 Tθ = −



E. Lavretsky

31

Adaptive Control: Introduction, Overview, and ApplicationsRobust and Adaptive Control Workshop

1st-Order Nonlinear System
MRAC Simulation

Good Tracking & Poor Parameter Estimation
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1st-Order Nonlinear System
MRAC Simulation, (continued)

Nonlinearity: Poor Parameter Estimation
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1st-Order Nonlinear System
MRAC Simulation, (completed)

Nonlinearity: Poor Estimation
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Example: MRAC of a 1st-Order Nonlinear
System with Local Nonlinearity

• Unstable Dynamics:
– plant parameters                  are unknown
– nonlinearity:

• known basis functions:
• unknown parameters:

• Reference Model:
• Adaptive Control:
• Parameter Adaptation:

• Reference Input:

( )( ) ( )3 , 0 0x x u f x x= + − =

1, 3a b= =

( ) ( )4 4 , 0 0m m mx x r t x= − + =

( )ˆ ˆ ˆT
x ru k x k r xθ= + + Φ ( )

( )

( ) ( ) 4

ˆ ˆ2 , 0 0

ˆ ˆ2 , 0 0

ˆ ˆ2 , 0 0

x x

r r

k x e k

k r e k

x eθ θ

= − =

= − =

= − Φ =

( ) ( ) 3 3 3sin 3 sin sin sin
2 4 8
t t tr t t ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

( ) ( )Tf x xθ= Φ
( ) ( ) ( ) ( )( )2 20.5 10 0.5 103 sin 2

T
x xx x e e x− + − −Φ =

( )0 1 1 0 Tθ = −
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1st-Order Nonlinear System with Local
Nonlinearity: MRAC Simulation

Good Tracking & Parameter Estimation
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1st-Order Nonlinear System with Local
Nonlinearity: MRAC Simulation, (continued)

Nonlinearity: Good Parameter Estimation
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1st-Order Nonlinear System with Local
Nonlinearity: MRAC Simulation, (completed)

Nonlinearity: Good Function Approximation
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MRAC of a 1st-Order Nonlinear System
Conclusions & Observations

• Direct MRAC provides good tracking in spite of 
unknown parameters and nonlinear uncertainties 
in the system dynamics

• Parameter convergence IS NOT guaranteed
• Sufficient Condition for Parameter Convergence

– Reference input r(t) satisfies Persistency of Excitation
• PE is hard to verify / compute

– Enforced for linear systems with local nonlinearities
• A control strategy that depends on parameter 

convergence, (such as indirect MRAC), is 
unreliable, unless PE condition takes place
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MRAC Design of nth Order Systems

• System Dynamics:
– are constant unknown

matrices
– is known constant matrix
– is known
– uncertain matched nonlinear function:

• matrix of constant unknown parameters:
• vector of N known basis functions:

• Stable Reference Model:
• Control Goal

– find u such that:

( )( ) , ,n mx A x B u f x x R u R= + Λ − ∈ ∈

( )1, diagn n m m
mA R Rλ λ× ×∈ Λ = ∈…

( ),  is Hurwitzm m m m mx A x B r A= +

( ) ( )lim 0mt
x t x t

→∞
− =

( ) ( )T mf x x R= Θ Φ ∈
m NR ×Θ∈

( ) ( ) ( )( )1
T

Nx x xϕ ϕΦ = …

n mB R ×∈
( )1, , sgn ii m λ∀ = …

, ,m n n n m
m mr R A R B R× ×∈ ∈ ∈
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MRAC Design of nth Order Systems 
(continued)

• Control Feedback:
– (m n + m2 + m N) - parameters to estimate:

• Closed-Loop System:

• Desired Dynamics:
• Model Matching Conditions

– there exist ideal gains              such that:

– Note: knowledge of the ideal gains is not required

( )ˆ ˆ ˆT T T
x ru K x K r x= + +Θ Φ

ˆ ˆ ˆ, ,x rK K Θ

( ) ( ) ( )( )ˆ ˆ ˆ TT T
x rx A B K x B K r x= + Λ + Λ + Θ−Θ Φ

T
x m

T
r m

A B K A

B K B

+ Λ =

Λ =

( )
( )

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

TT T T T
x m x x x x x

TT T T T
r m r r r r r

A B K A A B K A B K B K K B K

B K B B K B K B K K B K

+ Λ − = + Λ − − Λ = Λ − = Λ∆

Λ − = Λ − Λ = Λ − = Λ∆

m m m mx A x B r= +

( ),x rK K
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MRAC Design of nth Order Systems 
(continued)

• Tracking Error:
• Error Dynamics:

( ) ( ) ( )me t x t x t= −

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( )( )

ˆ ˆ ˆ

ˆ ˆ

m

TT T
x r m m m m

TT T
m m x m r r

T T T
m x r

e t x t x t

A B K x B K r x A x B r A x

A x x A B K A x B K K r B x

A e B K x K r x

∆Θ

= − =

⎛ ⎞
⎜ ⎟+ Λ + Λ + Θ−Θ Φ − − ±
⎜ ⎟⎜ ⎟
⎝ ⎠

= − + + Λ − + Λ − + Λ∆Θ Φ

= + Λ ∆ + ∆ + ∆Θ Φ
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MRAC Design of nth Order Systems 
(continued)

• Lyapunov Function Candidate

– where:
– is diagonal matrix with positive 

elements
– are symmetric 

positive definite matrices
– is unique symmetric positive definite 

solution of the algebraic Lyapunov equation
• is any symmetric positive definite matrix

( )
( ) ( ) ( )1 1 1

, , ,

trace trace trace

T
x r

T T T
x x x r r r

V e K K e Pe

K K K K− − −
Θ

∆ ∆ ∆Θ =

+ ∆ Γ ∆ Λ + ∆ Γ ∆ Λ + ∆Θ Γ ∆Θ Λ

0, 0, 0T T T
x x r r Θ ΘΓ = Γ > Γ = Γ > Γ = Γ >

( )trace i i
i

S s∑
( )1diag mλ λΛ …

0TP P= >
T

m mP A A P Q+ = −
0TQ Q= >
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MRAC Design of nth Order Systems 
(continued)

• Adaptive Control Design
– Choose adaptive laws, (on-line parameter updates) 

such that the time-derivative of the Lyapunov function 
decreases along the error dynamics trajectories

• Time-derivative of the Lyapunov function 
becomes semi-negative definite!

( )

( )

( ) ( )

ˆ sgn

ˆ sgn

ˆ sgn

T
x x

T
r r

T

K xe P B

K r e P B

x e P BΘ

= −Γ Λ

= −Γ Λ

Θ = −Γ Φ Λ

( ) ( ) ( ) ( )( ) ( ) ( ), , , 0T
x rV e t K t K t t e t Qe t∆ ∆ ∆Θ = − ≤
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MRAC Design of nth Order Systems 
(completed)

• Using Barbalat’s and Lyapunov-like 
Lemmas:

• Since                     it follows that:
• Conclusions

– achieved asymptotic tracking:
– all signals in the closed-loop system are 

bounded
• Remark

– Parameter convergence IS NOT guaranteed

( )lim , 0
t

V x t
→∞

=

( ) ( )T TV e t Qe t= − ( )lim 0
t

e t
→∞

=

( ) ( ) , as mx t x t t→ →∞
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Robustness of Adaptive Control

• Adaptive controllers are designed to 
control real physical systems
– non-parametric uncertainties may lead to 

performance degradation and / or instability
• low-frequency unmodeled dynamics, (structural 

vibrations)
• low-frequency unmodeled dynamics, (Coulomb 

friction)
• measurement noise
• computation round-off errors and sampling delays

• Need to enforce robustness of MRAC
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Parameter Drift in MRAC
• When r(t) is persistently exciting the system, 

both simulation and analysis indicate that MRAC 
systems are robust w.r.t non-parametric 
uncertainties

• When r(t) IS NOT persistently exciting even 
small uncertainties may lead to severe problems
– estimated parameters drift slowly as time goes on, 

and suddenly diverge sharply
– reference input contains insufficient parameter 

information
– adaptation has difficulty distinguishing parameter 

information from noise
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Parameter Drift in MRAC: Summary

• Occurs when signals are not persistently 
exciting

• Mainly caused by measurement noise and 
disturbances

• Does not effect tracking accuracy until the 
instability occurs

• Leads to sudden failure
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Dead-Zone Modification

• Method is based on the observation that small 
tracking errors contain mostly noise and 
disturbance

• Solution
– Turn off the adaptation process for “small” tracking 

errors
– MRAC using Dead-Zone
– is the size of the dead-zone

• Outcome
– Bounded Tracking

( )

( )

( ) ( )

sgn ,ˆ
0,

sgn ,ˆ
0,

sgn ,ˆ
0,

T
x

x

T
r

r

T

x e P B e
K

e

r e P B e
K

e

x e P B e

e

ε

ε

ε

ε

ε

ε
Θ

⎧−Γ Λ >⎪= ⎨
≤⎪⎩

⎧−Γ Λ >⎪= ⎨
≤⎪⎩

⎧−Γ Φ Λ >⎪Θ = ⎨
≤⎪⎩

ε
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1st-Order Linear System with Noise
MRAC w/o Dead-Zone: r(t) = 4

• Satisfactory Tracking
• Parameter Drift due to measurement noise
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1st-Order Linear System with Noise
MRAC with Dead-Zone: r(t) = 4

• Satisfactory Tracking
• No Parameter Drift
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Parametric and Non-Parametric 
Uncertainties

• Parametric Uncertainties are often easy to 
characterize
– Example:

• uncertainty in mass m is parametric
• neglected motor dynamics, measurement noise, sensor 

dynamics are non-parametric uncertainties

• Both Parametric and Non-Parametric 
Uncertainties occur during Function 
Approximation

m x u=

( ) ( ) ( )
1

ˆ
N

i i
i

f x x xθ ϕ ε
=

= +∑
parametric non-parametric
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Enforcing Robustness in MRAC 
Systems

• Non-Parametric Uncertainty
– Dead-Zone modification
– Others ?

• Parametric Uncertainty
– Need a set of basis functions that can approximate a 

large class of functions within a given tolerance
• Fourier series
• Splines
• Polynomials
• Artificial Neural Networks

– sigmoidal
– RBF
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Artificial Neural Networks

Σ
x

y
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NN Architectures

• Artificial Neural Networks are multi-input-multi-
output systems composed of many inter-
connected nonlinear processing elements 
(neurons) operating in parallel

Network Input

Input Node

1

2

3

First Hidden

Network Output

Output

4

5

6

Second Hidden

Two-Hidden-Layers Neural 
Network

1

2

3

Network Input Network Output

Input Node Output

Neurons
Ordered Neural Network

1

2

3

4

5

Single-Hidden-Layer Neural Network
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Single Hidden Layer (SHL) 
Feedforward Neural Networks (FNN)

• Three distinct characteristics
– model of each neuron includes a nonlinear

activation function
• sigmoid
• radial basis function

– a single layer of N hidden neurons
– feedforward connectivity

( ) 1
1 ss

e
σ −=

+

( )
2

22
x r

x e σϕ
−

−

=
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SHL FNN Architecture

Output

1

2

N

1

1

x y

Input

Hidden Layer of N neurons

Output Bias

Threshold
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SHL FNN Function

• Maps n - dimensional input into m -
dimensional output:

• Functional Dependence

– sigmoidal:
– RBF:

( ) ( ), ,n mx NN x x R NN x R→ ∈ ∈

( ) ( )T TNN x W V x bσ θ= + +

( )
( )

( )
( )

( )
1

T T

N

x

x C

NN x W b W x b
x C

ϕ

ϕ

Φ

⎛ ⎞−
⎜ ⎟

= + = Φ +⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠
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Sigmoidal NN

• Matrix form:

• Vector of hidden layer sigmoids:

• Matrix of inner-layer weights:

• Matrix of output-layer weights:

• Vector of output biases            and thresholds

• kth output:

( )
1

T T x
NN x W V cσ

⎛ ⎞⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

( ) ( ) ( )( )1 1

TT T T
N NV x v x v xσ θ σ θ σ θ+ = + +…

( )1
n N

NV v v R ×= ∈…

( )1
N m

mW w w R ×= ∈…
mc R∈ NRθ ∈

( ) ( )
N n

T TNN x w v x c w v x cσ θ σ θ⎛ ⎞
= + + = + +∑ ∑

1 1
k k k k k j k i k i k k

j i= =
⎜ ⎟
⎝ ⎠
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Sigmoidal NN, (continued)

• Universal Approximation Property
– large class of functions can be approximated 

by sigmoidal SHL NN-s within any given 
tolerance, on compacted domains

• Introduce:

• Then:

( ) : 0 , , , ,n m nf x R R N W b V x X Rε θ∀ → ∀ > ∃ ∀ ∈ ⊂

( ) 1O
1

T T x
f x W V b

N
σ ε
⎛ ⎞⎛ ⎞ ⎛ ⎞− − ≤ =⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠

, , ,
1 1

T TT TW W b V V
σ

θ σ µ
x⎡ ⎤ ⎡

⎡ ⎤ ⎡ ⎤
⎤

⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎥
⎣ ⎦ ⎣ ⎦

( ) ( )T TNN x W Vσ µ=
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Sigmoidal SHL NN: Summary
• A very large class of functions can be 

approximated using linear combinations of 
shifted and scaled sigmoids

• NN approximation error decreases as the 
number of hidden-layer neurons N increases:

• Inclusion of biases and thresholds into NN 
weight matrices simplifies bookkeeping

• Function approximation using sigmoidal NN 
means finding connection weights W and V

( ) ( )
1
2Of x NN x N

−⎛ ⎞
− = ⎜ ⎟

⎝ ⎠

( ) ( )T TNN x W Vσ µ=
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RBF NN

• Matrix form:

• Vector of RBF-s:

• Matrix of RBF centers:

• Vector of RBF widths:

• Matrix of output weights:

• Vector of output biases:

• kth output:

( )
22

1
22

1 22
N

N

T
x Cx C

x e e σσ

− −− −⎛ ⎞
⎜ ⎟Φ =
⎜ ⎟
⎝ ⎠

…

( ) ( )TNN x W x b= Φ +

1
n N

NC C C R ×⎡ ⎤∈⎣ ⎦…

( )1
N m

mW w w R ×= ∈…
mb R∈

( )1
T N

N Rσ σ σ ∈…

( ) ( )

2

22

1

j

j

x C
N

T
k k k j k k

j
NN x w x b w e bσ

− −

=

= Φ + = +∑
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RBF NN, (continued)

• Universal Approximation Property
– large class of functions can be approximated 

by RBF NN-s within any given tolerance, on 
compacted domains

• Introduce:

• Then:

( ) : 0 , , ,n m nf x R R N W C x X Rε σ∀ → ∀ > ∃ ∀ ∈ ⊂

( ) ( )
1

OT nf x W x b Nε
−⎛ ⎞

− Φ − ≤ = ⎜ ⎟
⎝ ⎠

[ ] ( ) ( ),
1

x
W W b x

⎡Φ ⎤
Φ ⎢ ⎥

⎣ ⎦

( ) ( )TNN x W x= Φ
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RBF NN: Summary
• A very large class of functions can be 

approximated using linear combinations of 
shifted and scaled gaussians

• NN approximation error decreases as the 
number of hidden-layer neurons N increases:

• Inclusion of biases into NN output weight matrix 
simplifies bookkeeping

• Function approximation using RBF NN means 
finding output weights W, centers C, and widths

( ) ( )
1

O nf x NN x N
−⎛ ⎞

− = ⎜ ⎟
⎝ ⎠

( ) ( )TNN x W x= Φ

σ



E. Lavretsky

12

Adaptive Control: Introduction, Overview, and ApplicationsRobust and Adaptive Control Workshop

What is Next?

• Use SHL FNN-s in the context of MRAC 
systems
– off-line / on-line approximation of uncertain 

nonlinearities in system dynamics
• modeling errors, (aerodynamics)
• battle damage
• control failures

• Start with fixed widths RBF NN architectures, 
(linear in unknown parameters)

• Generalize to using sigmoidal NN-s
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Adaptive NeuroControl
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nth Order Systems with Matched 
Uncertainties

• System Dynamics:
– are constant unknown

matrices
– is known constant matrix, and
– is known

• Approximation of uncertainty:
– matrix of constant unknown parameters:
– vector of N fixed RBF-s:
– function approximation tolerance:

( )( ) , ,n mx A x B u f x x R u R= + Λ − ∈ ∈

( )1, diagn n m m
mA R Rλ λ× ×∈ Λ = ∈…

( ) ( ) ( )T
ff x x xε= Θ Φ +

m NR ×Θ∈

( ) ( ) ( )( )1
T

Nx x xϕ ϕΦ = …

n mB R ×∈

( )1, , sgn ii m λ∀ = …

( ) m
f x Rε ∈
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nth Order Systems with Matched 
Uncertainties, (continued)

• Assumption: Number of RBF-s, true 
(unknown) output weights W and widths 
are such that RBF NN approximates the 
nonlinearity within given tolerance:

• RBF NN estimator:
• Estimation error:

( ) ( ) ( ) ,T n
f x f x x x X Rε ε= −Θ Φ ≤ ∀ ∈ ⊂

( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ T T
f fNN x f x x x x xε ε

∆Θ

− = Θ−Θ Φ − = ∆Θ Φ −

( ) ( )ˆ ˆ Tf x x= Θ Φ

σ
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nth Order Systems with Matched 
Uncertainties, (continued)

• Stable Reference Model:
• Control Goal

– bounded tracking:

• MRAC Design Process
– choose N and vector of widths

• can be performed off-line in order to incorporate 
any prior knowledge about the uncertainty

– design MRAC and evaluate closed-loop 
system performance

– repeat previous two steps, if required

( ),  is Hurwitzm m m m mx A x B r A= +

( ) ( )lim m xt
x t x t ε

→∞
− ≤

, ,m n n m m
m mr R A R B R× ×∈ ∈ ∈

σ
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nth Order Systems with Matched 
Uncertainties, (continued)

• Control Feedback:
– (m n + m2 + m N) - parameters to estimate:

• Closed-Loop:

• Desired Dynamics:
• Model Matching Conditions

– there exist ideal gains              such that:

– Note: knowledge of the ideal gains is not required

( )ˆ ˆ ˆT T T
x ru K x K r x= + +Θ Φ

ˆ ˆ ˆ, ,x rK K Θ

( ) ( ) ( )( )ˆ ˆT T T
x r fx A B K x B K r x xε= + Λ + Λ + ∆Θ Φ −

T
x m

T
r m

A B K A

B K B

+ Λ =

Λ =

( )
( )

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

TT T T T
x m x x x x x

TT T T T
r m r r r r r

A B K A A B K A B K B K K B K

B K B B K B K B K K B K

+ Λ − = + Λ − − Λ = Λ − = Λ∆

Λ − = Λ − Λ = Λ − = Λ∆

m m m mx A x B r= +

( ),x rK K
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nth Order Systems with Matched 
Uncertainties, (continued)

• Tracking Error:
• Error Dynamics:

• Remarks
– estimation error           is bounded, as long as
– need to keep x within X

( ) ( ) ( )me t x t x t= −

( ) ( ) ( )
( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

ˆ ˆ

ˆ ˆ

m

T T T
x r f m m m m

TT T
m m x m r r f

T T T
m x r f

e t x t x t

A B K x B K r x x A x B r A x

A x x A B K A x B K K r B x x

A e B K x K r x x

ε

ε

ε

= − =

+ Λ + Λ + ∆Θ Φ − − − ±

= − + + Λ − + Λ − + Λ ∆Θ Φ −

= + Λ ∆ + ∆ + ∆Θ Φ −

( )f xε x X∈
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nth Order Systems with Matched 
Uncertainties, (continued)

• Lyapunov Function Candidate

– where:
– is diagonal matrix with positive 

elements
– are symmetric 

positive definite matrices
– is unique symmetric positive definite 

solution of the algebraic Lyapunov equation
• is any symmetric positive definite matrix

( )
( ) ( ) ( )1 1 1

, , ,

trace trace trace

T
x r

T T T
x x x r r r

V e K K e P e

K K K K− − −
Θ

∆ ∆ ∆Θ =

+ ∆ Γ ∆ Λ + ∆ Γ ∆ Λ + ∆Θ Γ ∆Θ Λ

0, 0, 0T T T
x x r r Θ ΘΓ = Γ > Γ = Γ > Γ = Γ >

( )trace i i
i

S s∑
( )1diag mλ λΛ …

0TP P= >
TP A A P Q+ = −

0TQ Q= >
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nth Order Systems with Matched 
Uncertainties, (continued)

• Time-derivative of the Lyapunov function

( ) ( ) ( )
( ) ( )( )( )

( ) ( )( )( )
( ) ( ) ( )

1 1 1

1 1 1

ˆ ˆ ˆ2 trace 2 trace 2 trace

ˆ ˆ ˆ2 trace 2 trace 2 trace

T T

T T T
x x x r r r

TT T T
m x r f

T T T T
m x r f

T T T
x x x r r r

T
m

V e P e e P e

K K K K

A e B K x K r x x P e

e P A e B K x K r x x

K K K K

e A P P

ε

ε

− − −
Θ

− − −
Θ

= +

+ ∆ Γ Λ + ∆ Γ Λ + ∆Θ Γ Θ Λ

= + Λ ∆ + ∆ + ∆Θ Φ −

+ + Λ ∆ + ∆ + ∆Θ Φ −

+ ∆ Γ Λ + ∆ Γ Λ + ∆Θ Γ Θ Λ

= +( )
( ) ( )( )

( ) ( ) ( )1 1 1

2

ˆ ˆ ˆ2 trace 2 trace 2 trace

m

T T T T
x r f

T T T
x x x r r r

A e

e P B K x K r x x

K K K K

ε

− − −
Θ

+ Λ ∆ + ∆ + ∆Θ Φ −

+ ∆ Γ Λ + ∆ Γ Λ + ∆Θ Γ Θ Λ
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nth Order Systems with Matched 
Uncertainties, (continued)

• Time-derivative of the Lyapunov function

• Using trace identity:

• Example:

( )

( )
( )

( ) ( )

1

1

1

2

ˆ2 2 trace

ˆ2 2 trace

ˆ2 2 trace

T T
f

T T T
x x x x

T T T
r r r r

T T T

V e Q e e P B x

e P B K x K K

e P B K r K K

e P B x

ε

−

−

−
Θ

= − − Λ

+ Λ∆ + ∆ Γ Λ

+ Λ∆ + ∆ Γ Λ

+ Λ∆Θ Φ + ∆Θ Γ Θ Λ

( )traceT Ta b b a=

trace
T T

T T T T
x x

b ba a

e P B K x K x e P B
⎛ ⎞
⎜ ⎟Λ∆ = ∆ Λ
⎜ ⎟
⎝ ⎠
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nth Order Systems with Matched 
Uncertainties, (continued)

• Time-derivative of the Lyapunov function

• Problem
– choose adaptive parameters              such that time-

derivative    becomes negative definite outside of a 
compact set in the error state space, and all 
parameters remain bounded for all future times

( )

( ){ }
( ){ }

( ) ( ){ }

1

1

1

2

ˆ2 trace sgn

ˆ2 trace sgn

ˆ2 trace sgn

T T
f

T T
x x x

T T
r r r

T T

V e Q e e P B x

K K x e P B

K K r e P B

x e P B

ε

−
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−
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= − − Λ

⎛ ⎞+ ∆ Γ + Λ Λ⎜ ⎟
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⎛ ⎞+ ∆Θ Γ Θ+Φ Λ Λ⎜ ⎟
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nth Order Systems with Matched 
Uncertainties, (continued)

• Suppose that we choose adaptive laws:

• Then we get:

• Consequently,        outside of the compact set

• Unfortunately, inside E parameter errors may grow out of 
bounds, (for                IS NOT necessarily negative!)

( )

( )

( ) ( )

ˆ sgn

ˆ sgn

ˆ sgn

T
x x

T
r r

T

K x e P B

K r e P B

x e P BΘ

= −Γ Λ

= −Γ Λ
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min max2 2T T

fV e Q e e P B x Q e e P Bε λ λ ε= − − Λ ≤ − + Λ
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2
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P B
E e e

Q
λ ε

λ
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,e E V∈
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How to Keep Adaptive Parameters 
Bounded?

• - modification:

• - modification:

• Modifications add damping to adaptive laws
– damping controlled by choosing
– there is a trade off between adaptation rate and 

damping

σ

e ( ) ( )

( ) ( )

( )( ) ( )

ˆ ˆ sgn

ˆ ˆ sgn

ˆ ˆ sgn

T T
x x x x

T T
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Θ = −Γ Φ + Θ Λ
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( ) ( )
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ˆ ˆ sgn

ˆ ˆ sgn

ˆ ˆ sgn

T
x x x x

T
r r r r

T

K x e P B K
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Introducing Projection Operator

• Requires no damping terms
• Designed to keep NN weights within pre-

specified bounds
• Maintains negative values of the Lyapunov 

function time-derivative outside of compact 
subset:

– the size of E defines tracking tolerance
– the size of E can be controlled!

( )
( )
max

min

2
:

P B
E e e

Q
λ ε

λ
⎧ ⎫Λ⎪ ⎪≤⎨ ⎬
⎪ ⎪⎩ ⎭
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Projection Operator
• Function          defines pre-

specified parameter domain 
boundary

• Example:

• specifies boundary
• specifies boundary tolerance

∗θ

θ

( )θf∇
( ){ }1fθ θ =

( )y,Proj θ
y

( ){ }0≤θθ f

( )f θ

( )
2 2

max
2
max

f
θ

θ θ
θ

ε θ
−

=

( ){ } { }
( ){ } { } ( )

( ){ } { }

max

max

max

0  is within bounds

0 1 1  is within 1 % of bounds

1 1  is outside of bounds

f

f

f

θ θ

θ

θ θ θ θ

θ θ ε θ θ ε

θ θ ε θ θ

≤ ⇒ ≤ ⇒

< ≤ ⇒ ≤ + ⇒ +

> ⇒ > + ⇒

θε
maxθ
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Projection Operator, (continued)
• Definition:

• Depends on

• Does not alter y if     is within the pre-
specified bounds:

• Gradient:

• In                          the operator subtracts              
gradient vector            (normal to the 
boundary) from y

– get a smooth transition from y for             to 
a tangent vector field for

• Important Property

( )
( ) ( )( )

( )
( ) ( ) ( )2 , if 0 and 0

Proj ,

, if not
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Tf f
y y f f y f

y f
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θ θ
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θ θ
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θ
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( ) ( )( )Proj , 0
T
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max
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Lyapunov Function Time-Derivative with 
Projection Operator

• Make trace terms semi-negative AND keep parameters 
bounded: ( )

( )
( )

( )
( )

( )
( ) ( )

1

ˆProj ,

1

ˆProj ,

1

ˆProj ,

2

ˆ2 trace sgn

ˆ2 trace sgn

ˆ2 trace sgn

x

r

T T
f

T T
x x x

yK y

T T
r r r

yK y

T T

y y

V e Q e e P B x

K K x e P B

K K r e P B

x e P B

ε

−

−

−

−

−
Θ

Θ −

= − − Λ

⎛ ⎞⎧ ⎫
⎜ ⎟⎪ ⎪+ ∆ Γ + Λ Λ⎨ ⎬⎜ ⎟

⎪ ⎪⎜ ⎟⎩ ⎭⎝ ⎠
⎛ ⎞⎧ ⎫
⎜ ⎟⎪ ⎪+ ∆ Γ + Λ Λ⎨ ⎬⎜ ⎟

⎪ ⎪⎜ ⎟⎩ ⎭⎝ ⎠

+ ∆Θ Γ Θ +Φ Λ
⎛ ⎞⎧ ⎫

⎪ ⎪⎜ ⎟Λ⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟⎩ ⎭⎝ ⎠
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Adaptation with Projection

• Modified adaptive laws:

• Projection Operator, its bounds and tolerances are defined column-
wise

• Lyapunov function time-derivative:

• Adaptive parameters stay within the pre-specified bounds, while          

outside of the compact set:

( )( )
( )( )

( ) ( )( )

ˆ ˆ= Proj , sgn

ˆ ˆ= Proj , sgn

ˆ ˆ= Proj , sgn

T
x x x

T
r r r

T

K K x e P B

K K r e P B

x e P BΘ

Γ − Λ

Γ − Λ

Θ Γ Θ −Φ Λ

( ) ( ) ( )2
min max2 2T T

fV e Q e e P B x Q e e P Bε λ λ ε≤ − − Λ ≤ − + Λ

0V <

( )
( )
max2

:
P B

E e e
λ ε

min Qλ
⎧ ⎫Λ⎪ ⎪≤⎨ ⎬
⎪ ⎪⎩ ⎭
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Example: Projection Operator, (scalar case)

• Scalar adaptive gain:
• Pre-specified parameter domain boundary:

– using function:

– Projection Operator:

( )( )ˆ ˆ= Proj , sgnk k x e bγ −

( )
2 2

max
2
max

ˆˆ k kf k
kε
−

=

( ){ } { }
( ){ } { } ( )

( ){ } { }

max

max

max

ˆ ˆ ˆ0  is within bounds

ˆ ˆ ˆ0 1 1  is within 1 % of bounds

ˆ ˆ ˆ1 1  is outside of bounds

f k k k k

f k k k k

f k k k k

ε ε

ε

≤ ⇒ ≤ ⇒

< ≤ ⇒ ≤ + ⇒ +

> ⇒ > + ⇒

( ) ( ) 2
max

ˆ2ˆ ˆ kf k f k
kε

′∇ = =

( ) ( )( ) ( ) ( )ˆ ˆ ˆ1 , if 0 and 0ˆProj ,
, if not

y f k f k y f k
k y

y

⎧ ′− > >⎪= ⎨
⎪⎩

( )sgny x e b= −
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Example: Projection Operator, (scalar case)
(continued)

• Adaptive Law, (b > 0):

• Geometric Interpretation
– adaptive parameter        changes within the pre-specified interval
– interval bound:
– Bound tolerance:

( )( ) ( ) ( )

( )
2 2

max
2
max

ˆ ˆ ˆ1 , if  0 and 0ˆ
, if not

ˆˆwhere:

x e f k f k x e f k
k

x e

k kf k
kε

⎧ ⎡ ⎤′− − > <⎪ ⎣ ⎦= ⎨
⎪−⎩

−
=

( )k̂ t

maxk
ε

x
max 1k ε+max 1k ε− +

( )k̂ t

0 maxkmaxk−
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Adaptive Augmentation Design
• Nominal Control:

• Adaptive Control:

• Augmentation:

• Incremental Adaptation:

( )ˆ ˆ ˆT T T
x ru K x K r x= + +Θ Φ

T T
nom x ru F x F r= +

( )

( ) ( ) ( )

( )
ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ
x r

T T T
x r nom

T T T
nom x x r r

D D

T T T
nom x r

u K x K r x u

u K F x K F r x

u D x D x x

= + +Θ Φ ±

= + − + − +Θ Φ

= + + +Θ Φ

( )( )
( )( )

( ) ( )( )

ˆ ˆ ˆ= Proj , sgn , 0

ˆ ˆ ˆ= Proj , sgn , 0

ˆ ˆ ˆ= Proj , sgn , 0

T
x x x x n m

T
r r r r m m

T
N m

D D x e P B D

D D r e P B D

x e P B

×

×

Θ ×

Γ − Λ =

Γ − Λ =

Θ Γ Θ −Φ Λ Θ =
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Adaptive Augmentation Block-Diagram

• Reference Model provides desired response
• Nominal Baseline Controller
• Adaptive Augmentation

– Dead-Zone modification prevents adaptation from changing nominal 
closed-loop dynamics

– Projection Operator bounds adaptation parameters / gains

A/C Sensors

Ref. 
Model -

refx

Control 
Allocation

Adaptive 

+
Baseline Inner-Loop 

Controller 

Actuators

r

e

x

x

Reference Input, r(t)
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Adaptive Control using Sigmoidal NN

• System Dynamics:
– are constant unknown matrices
– is known constant matrix, and
– is known

• Approximation of uncertainty:

– matrix of constant unknown Inner-Layer weights:

– matrix of constant unknown Outer-Layer weights:

– vector of N sigmoids and a unity:

( )( ) , ,n mx A x B u f x x R u R= + Λ − ∈ ∈

( )1, diagn n m m
mA R Rλ λ× ×∈ Λ = ∈…

M mB R ×∈
( )1, , sgn ii m λ∀ = …

M m≥

( ) ( ) ( ) ( ) ( ), 1 ,
TT T T m

f ff x W V x x x Rσ µ ε µ ε= + = ∈

( )11

1

n NN

N

v v
V R

θ θ
+ ×⎡ ⎤

= ∈⎢ ⎥
⎣ ⎦

…
…

( )11

1

N mm

m

w w
W R

c c
+ ×⎡ ⎤

= ∈⎢ ⎥
⎣ ⎦

…
…

( ) ( ) ( )( ) ( )1 1
11 , where:  

1
TT T T

N N sV v x v x s
e

σ µ σ θ σ θ σ −= + + =
+

…
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Adaptive Control using Sigmoidal NN

• Control Feedback:
– (m n + m2 + (n + 1) N + (N + 1) m) - parameters to 

estimate:

• Adaptation with Projection,         :

• Provides bounded tracking

( )ˆ ˆ ˆ ˆT T T T
x ru K x K r W Vσ µ= + +

ˆ ˆ ˆ ˆ, , ,x rK K W V

( )
( )

( ) ( )( )( )
( )( )

ˆ ˆProj ,

ˆ ˆProj ,

ˆ ˆ ˆ ˆ ˆProj ,

ˆ ˆ ˆ ˆProj ,

T
x x x

T
u u u

T T T T
W

T T T
V

K K x e P B

K K r e P B

W W V V V e P B

V V e P BW V

σ µ σ µ µ

µ σ µ

⎧ = Γ −⎪
⎪

= Γ −⎪⎪
⎨

′= Γ −⎪
⎪
⎪ ′= Γ⎪⎩

( )0Λ >
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Design Example
Adaptive Reconfigurable Flight Control using 

RBF NN-s



E. Lavretsky

37

Adaptive Control: Introduction, Overview, and ApplicationsRobust and Adaptive Control Workshop

Aircraft Model
• Flight Dynamics Approximation, (constant speed):

– State:
– Control allocation matrix G
– Virtual Control Input:
– Modeling control uncertainty / failures by              diagonal matrix 

with positive elements
– Vector of actual control inputs:

– Ap, Bp are known matrices
• represent nominal system dynamics

– Matched unknown nonlinear effects:

( )( ) ( )( )0 0

p

p p p p p p p p
B

x A x BG K x A x B K xδ δ= + Λ + = + Λ +

( )Tpx p q rα β=

3Rδ ∈

3 3R ×Λ∈

( ) 7T
LOB LMB LIB RIB RMB ROB TvecG Rδ δ δ δ δ δ δ δΛ = ∈

( ) 3
0 pK x R∈
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Baseline Inner-Loop Controller
• Dynamics:
• States:
• Inner-loop commands, (reference input):

• System output:
• Augmented system dynamics:

• Inner-Loop Control:

1 2c c c c p cx A x B x B u= + +

( ) 4T
c I I I wx q p r r R= ∈

( )Tcmd cmd cmd cmd
zu a p rβ=

( )( ) ( )( )0 0

p

z p p p p p p p
D

a C x DG K x C x D K xδ δ= + Λ + = + Λ +

( )( )
1 2

0
1 2

0 0
0

pp p p
p

c c cc c

Bx x BA

Ax x B
K x u

B A Bx x
δ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + Λ + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

( )( )1 0 2px A x B K x B uδ= + Λ + +

T T
L x uK x K uδ = +
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Reference Model

• Assuming nominal data,                          , and 
using baseline controller:

• Assumption: Reference model matrix     is 
Hurwitz, (i.e., baseline controller stabilizes 
nominal system)

( ) ( )1 2 1

ref ref

T T
ref x ref u ref ref ref

A B

x A B K x B B K u A x B u= + + + = +

( )( )3 3 0 3 1, 0pI K x× ×Λ = =

refA
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Inner-Loop Control Objective
(Bounded Tracking)

• Design virtual control input such that, 
despite system uncertainties, the system 
state tracks the state of the reference 
model, while all closed-loop signals remain 
bounded

• Solution
– Incremental, (i.e., adaptive augmentation), 

MRAC system with RBF NN, Dead-Zone, and 
Projection Operator
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Adaptive Augmentation

• Total control input:

• Incremental adaptation with projection:

( ) ( )

( )
( )

( ) ( ) ( )
( )

( ) ( )

0

Nominal BaselineTotal Adaptive Control

0

, ˆˆ ˆ

Nominal Baseline Inc

ˆ ˆ ˆ ,

ˆ ˆ ˆ,

ˆ ˆ ˆ, ,

TL px u

T T
x u p L

T T

L x x u u p

x u xk k

T T T
L p c x u p

K x K u K x x u

x u K K x K K u K x

x x u K x K u x

δ

δ δ

δ

δ

Θ Φ

= + − ±

= + − + − −

= + ∆ + ∆ −Θ Φ
remental Adaptive Control

( ) ( )

( ) ( )

( )( ) ( )

1 3

1 4

1

ˆ ˆ ˆProj , , 0 0

ˆ ˆ ˆProj , , 0 0

ˆ ˆ ˆProj , , 0 0

T
x x x x n

T
u u u u n

T
p N m

K K x e P B K

K K u e P B K

x e P B

×

×

Θ ×

⎧∆ = Γ ∆ − ∆ =⎪
⎪
∆ = Γ ∆ − ∆ =⎨
⎪
⎪Θ = Γ Θ Φ Θ =
⎩
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Inner-Loop Block-Diagram

A/C Sensors

Ref. 
Model - 

refx

Control 
Allocation

Adaptive 

+
Baseline Inner-Loop 

Controller 

Actuators

( )TI I I wx p q r q p r rα β=

( )cmd cmd cmd cmd
zu a p rβ=

e

x

• Reference Model provides desired response
• Nominal Baseline Inner-Loop Controller
• Adaptive Augmentation

– Dead-Zone modification prevents adaptation from changing nominal 
closed-loop dynamics

– Projection Operator bounds adaptation parameters / gains
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Adaptive Backstepping
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Why?

• MRAC requires model matching conditions

• Example that violates matching
– System:

– Reference model:

T
x m

T
r m

A B K A

B K B

+ Λ =

Λ =

1 1

2 2

0 1 0
0 0 1

bA

x x
u

x x
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

1 1

2 2

1 1 0
0 2 1

m

m m

m m

A

x x
r

x x
⎛ ⎞ ⎛ ⎞−⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

1 0 0 0
0 2

T
m xA A bk

⎛ ⎞ ⎛ ⎞
− = ≠ =⎜ ⎟ ⎜ ⎟∗ ∗⎝ ⎠ ⎝ ⎠

Matching 
conditions 
don’t hold
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Control Tracking Problem

• Consider 2nd order cascaded system

• Control goal
– Choose u such that:

• Assumptions
– All functions are known
– does not cross zero

• Example: AOA tracking

( ) ( )
( ) ( )

1 1 1 1 1 2

2 2 1 2 2 1 2, ,

x f x g x x

x f x x g x x u

= +

= +

( ) ( )1 1 , ascomx t x t t→ →∞

0ig ≠
( )

( )

1 2

1
1

2
2

0

1

, 1

x x

g
f

cmd
g uf

L q

q M q q

αα α α

α

⎧
⎪ = − +
⎪
⎨
⎪ = +
⎪
⎩
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Backstepping Design

• Introduce pseudo control:
• Rewrite the 1st equation:

• Dynamic inversion using pseudo control:

• 1st state error dynamics:

( )2 2
com comx x t=

( ) ( ) ( )( )
2

1 1 1 1 1 2 1 1 2 2
com com

x

x f x g x x g x x x
∆

= + + −

( ) ( )( )2 1 1 1 1 1
1 1

1com comx x f x k x
g x

= − − ∆

( )1 1 1 1 1 2x k x g x x∆ = − ∆ + ∆
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Backstepping Design
(continued)

• Dynamic inversion using actual control

• 2nd state error dynamics

• Asymptotically stable error dynamics

• Conclusion:

( ) ( ) ( )( )2 2 1 2 2 2 1 1 1
2 1 2

1 ,
,

comu x f x x k x g x x
g x x

= − − ∆ − ∆

( )2 2 2 1 1 1x k x g x x∆ = − ∆ − ∆

( )
( )
1 1 11 1

1 1 22 2

k g xx x
g x kx x
−⎛ ⎞∆ ∆⎛ ⎞ ⎛ ⎞

= ⎜ ⎟⎜ ⎟ ⎜ ⎟− −∆ ∆⎝ ⎠ ⎝ ⎠⎝ ⎠

( ) ( ) , ascom
i ix t x t t→ →∞

nonlinear system
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Adaptive Backstepping Design

• 1st state dynamics:
– Function estimation errors:

• Dynamic inversion using pseudo control 
and estimated functions:

• 1st state error dynamics:
( ) ( )( )2 1 1 1 1 1

1 1

1 ˆ
ˆ

com comx x f x k x
g x

= − − ∆

1 1 1 2 1 2 1 1
ˆ ˆ ˆcomx f g x g x f g= + + ∆ −∆ −∆ u

1 1 1 1 1 1
ˆ ˆ,f f f g g g∆ − ∆ −

1 1 1 1 2 1 1ˆx k x g x f g u∆ = − ∆ + ∆ −∆ −∆
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Adaptive Backstepping Design
(continued)

• 2nd state dynamics:
– Function estimation errors:

• Dynamic inversion using actual control 
and estimated functions:

• 2nd state error dynamics:
( ) ( ) ( )( )2 2 1 2 2 2 1 1 1

2 1 2

1 ˆ ˆ,
ˆ ,

comu x f x x k x g x x
g x x

= − − ∆ −

2 2 2 2 2
ˆ ˆx f g u f g u= + −∆ −∆

2 2 2 2 2 2
ˆ ˆ,f f f g g g∆ − ∆ −

2 2 2 1 1 2 2ˆx k x g x f g u∆ = − ∆ − ∆ −∆ −∆
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Adaptive Backstepping Design
(continued)

• Combined error dynamics:

• Uncertainty parameterization, function and 
parameter estimation errors:

( )
( )

1 1 11 1 1 1

1 1 22 2 2 2

ˆ
ˆ

k g xx x f g u
g x kx x f g u
−⎛ ⎞∆ ∆ −∆ −∆⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −∆ ∆ −∆ −∆⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

( )
( )

1 2

1 2

,

,
i i

i i

T
i f f f

T
i g g g

f x x

g x x

θ ε

θ ε

∆ = ∆ Φ −

∆ = ∆ Φ −

ˆ

ˆ
i i i

i i i

f f f

g g g

θ θ θ

θ θ θ

∆ −

∆ −
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Adaptive Backstepping Design
(continued)

• Tracking error dynamics:

• Stable robust adaptive laws:

• Conclusion: Bounded tracking

1 11 1

2 22 2

1 1 1 1

2 1 2 2

ˆ
ˆ

T

T T
f gff g

T T
f ggf g

e eA

ux k g x
uux g k x

ε

ε εθ θ
ε εθ θ

Φ∆Θ

+Φ⎛ ⎞∆ ∆∆ − ∆ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
= − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ +Φ∆ ∆∆ − − ∆⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

Te Ae ε= −∆Θ Φ+

( )ˆ ˆProj , TeΘ = Γ Θ Φ
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Adaptive Control in the Presence of 
Actuator Constraints*

*E. Lavretsky and N. Hovakimyan, “Positive     – modification for stable adaptation in the presence of input 
constraints,” ACC, 2004.

µ
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Overview
• Problem: Assure stability of an adaptive control system in the 

presence of actuator position / rate saturation constraints.
• Solutions

– Ad-hoc
– Proof-by-simulation
– Lyapunov based

• limited class of systems
• sufficient conditions are often hard-to-verify

• Need: Theoretically justified and verifiable conditions for stable 
adaptation and control design with a possibility of avoiding actuator 
saturation phenomenon.

• Design Solutions include modifications, (adaptive / fixed gain) to:
– control input
– tracking error
– reference model

not acceptable

preferred
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Known Design Solutions
• R. Monopoli, (1975)

– adaptive modifications: tracking error and reference input
– no theoretical stability proof

• S.P. Karason, A.M. Annaswamy, (1994)
– adaptive modifications: reference input
– rigorous stability proof

• E.N. Johnson, A.J. Calise, (2003)
– pseudo control hedging (PCH)

• fixed gain modification of reference input

• E. Lavretsky, N. Hovakimyan, (2004)
– positive     – modification

• adaptive modification of control and reference inputs
• rigorous stability proof and verifiable sufficient conditions
• capability to completely avoid control saturation

µ
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Adaptive Control in the Presence of Input Constraints: 
Problem Formulation

• System dynamics:
– A is unknown matrix, (emulates battle damage)
– b is known control direction
– is unknown positive constant, (control failures)

• Static actuator

• Ideal Reference model dynamics:

( ) ( ) ( ) , ,nx t A x t b u t x R u Rλ= + ∈ ∈

( )
( ) ( )

( )( ) ( )
max

max
max max max

,
sat

sgn ,
c cc

c c

u t u t uuu t u
u u u t u t u

⎧ ≤⎛ ⎞ ⎪= = ⎨⎜ ⎟
≥⎝ ⎠ ⎪⎩

0λ >

( ) ( ) ( )* * *, ,n
m m m m mx t A x t b r t x R r R= + ∈ ∈

control failuresbattle damage

amplitude saturation

commanded input

bounded reference inputHurwitz
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Preliminaries

• Define:

• Commanded control deficiency:

• Adaptive control with     – modification, (implicit
form):

• Need explicit form of

max max max, where: 0u u uδ δ δ= − < <

max
max

sat c
c c

uu u u
u

δ
δ

⎛ ⎞
∆ = −⎜ ⎟

⎝ ⎠
µ

lin

T
c x r c

u

u k x k r uµ= + + ∆

linear feedback / 
feedforward component control deficiency feedback

safety zone

cu
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Positive      – modification
• Adaptive control with     – mod is given by 

convex combination of ulin and 

( )

( )

max

max max max
max

max max

,
1 1sat ,

1 1
1 ,

1

lin lin

lin
c lin lin lin

lin lin

u u u
uu u u u u u u
u

u u u u

δ

δ δ δ
δ

δ δ

µ µ
µ µ

µ
µ

⎧
⎪ ≤⎪

⎛ ⎞⎛ ⎞ ⎪
= + = + >⎜ ⎟ ⎨⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠ ⎪

⎪
− < −⎪

+⎩

µ
µ

max
max

sat linuu
u

δ
δ

⎛ ⎞
⎜ ⎟
⎝ ⎠

continuous in time but not
continuously differentiable

( ) max
max

0 0 sat linuu u
u

δ µ µ
⎛ ⎞

= ∧ = ∨ = ∞ ⇒ = ⎜ ⎟
⎝ ⎠
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Closed-Loop Dynamics
• – mod control:

• System dynamics:

• Closed-loop system:

( )
u

c cx A x b u b u uλ λ
∆

= + + −

µ c lin cu u uµ= + ∆

( )

max
max

where: sat

lin linu u u

lin c

c
lin lin

x A x b u b u u

uu u u
u

λ λ µ
∆ = −

= + + ∆ + ∆

⎛ ⎞
∆ = −⎜ ⎟

⎝ ⎠

linear control deficiency

( ) ( )T
x r linx A b k x b k r uλ λ= + + + ∆

does not depend on     explicitly µ
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Adaptive Reference Model Modification

( )( ) ( ) max,m m m m u linx A x b r t k u r t r= + + ∆ ≤

• Closed-loop system:

• Leads to consideration of adaptive
reference model:

• Matching conditions:

( ) ( )T
x r linx A b k x b k r uλ λ= + + + ∆

reference input

adaptive augmentation

( )*
*

* *
*

1

T
x m

r m
u r

m u

A b k A

b k b
k k

b b k

λ

λ

λ

⎧ + =
⎪⎪
⎨ ⎫= ⎪⇒ =⎪ ⎬

= ⎪⎪ ⎭⎩

( )0 , ,n
x r uk R k R k Rλ ∗ ∗ ∗∀ > ∃ ∈ ∈ ∈
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Adaptive Laws Derivation

• Tracking error:
• Parameter errors:

• Tracking error dynamics:

• Lyapunov function:

me x x= −

( )T
m x r m u line A e b k x k r b k uλ= + ∆ + ∆ − ∆ ∆

x x x

r r r

u u u

k k k

k k k

k k k

∗

∗

∗

⎧∆ = −
⎪
∆ = −⎨
⎪∆ = −⎩

( ) ( )1 1 2 1 2, , ,

where: 0

T T
x r u x x x r r u u

m m

V e k k k e Pe k k k k

P A A P Q

λ γ γ− − −∆ ∆ ∆ = + ∆ Γ ∆ + ∆ + ∆

+ = − <
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Stable Parameter Adaptation
• Adaptive laws derived to yield stability:

• For open-loop stable systems – global result
• For open-loop unstable systems verifiable 

sufficient conditions established:
• upper bound on
• lower bound on
• upper bounds on initial conditions x(0) and Lyapunov function 

V(0)

( ) ( )0 , , , 0

T
x x

T T
r r x r u

T
u u lin m

k x e Pb

k r t e Pb V e Qe V e k k k

k u e Pb

γ

γ

= −Γ

= − ⇔ = − < ⇒ ∆ ∆ ∆ ≤

= ∆

µ
maxr
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– mod Design Stepsµ
• Choose “safety zone”                      and sufficiently large

• Define virtual constraint:

• Linear component of adaptive control signal:

• Total adaptive control with     – mod:

max0 uδ< <

max maxu uδ δ= −

( )T
lin x ru k x k r t= +

max
max

1 sat
1

lin
c lin

uu u u
u

δ
δµ

µ
⎛ ⎞⎛ ⎞

= +⎜ ⎟⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠

µ

( )

T
x x

T
r r

T
u u lin m

k x e Pb

k r t e Pb

k u e Pb

γ

γ

⎧ = −Γ
⎪⎪ = −⎨
⎪

= ∆⎪⎩

adaptive laws

max
max

sat

lin

c
m m m m u lin

u

ux A x b r k u u
u
∆

⎛ ⎞
⎜ ⎟⎛ ⎞⎛ ⎞⎜ ⎟= + + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎜ ⎟
⎝ ⎠

modified reference 
model

0µ >



12

Adaptive Control: Introduction, Overview, and ApplicationsRobust and Adaptive Control Workshop

Simulation Example
• Unstable open-loop system:

• Choose:
• Ideal reference model:
• Reference input:
• Adaptation rates set to unity
• System and reference model start at 

zero

max max
max

sat , where: 0.5, 2, 0.47cux a x bu a b u
u

⎛ ⎞
= + = = =⎜ ⎟

⎝ ⎠

max0.2uδ =

( )( )6m mx x r t= − −

( ) ( ) ( )( )0.7 sin 2 sin 0.4r t t t= +

max max max0.8u u uδ δ= − =
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Simulation Data
0µ = 1µ =

10µ = 100µ =
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– mod Design Summaryµ
• Lyapunov based
• Provides closed-loop stability and bounded 

tracking
– convex combination of linear adaptive control and 

its         – limited value
– adaptive reference model modification

• Verifiable sufficient conditions
• Future Work

– MIMO systems
– Dynamic actuators
– Nonaffine-in-control dynamics
– Flight control applications

maxuδ



Adaptive Control: Introduction, Overview, and ApplicationsRobust and Adaptive Control Workshop

Adaptive Flight Control Applications, 
Open Problems, and Future Work
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Autonomous Formation Flight, (AFF)

References:
• Lavretsky, E. “F/A-18 Autonomous Formation Flight Control System Design”, AIAA GN&C 

Conference, Monterey, CA, 2002.
• Lavretsky, E., Hovakimyan, N., Calise, A., Stepanyan, V. “Adaptive Vortex Seeking Formation 

Flight Neurocontrol”, AIAA-2002-4757, AIAA GN&C Conference,St. Antonio, TX, 2003.
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AFF: Program Overview

• Program participants:
– NASA Dryden
– Boeing - Phantom Works
– UCLA

• Flight test program
– Completed in December of 2001
– 2 F/A-18 Hornets, 45 flights
– Demonstrated up to 20% induced 

aerodynamic drag reduction

• AFF Autopilot
– Baseline linear classical design to meet 

stability margins
– Adaptive incremental system to 

counteract unknown vortex effects and 
environmental disturbances

– On-line extremum seeking command 
generation
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AFF: Lead Aircraft Wingtip Vortex Effects
Induced Drag Ratio & Rolling Moment Coefficient
AFF: Lead Aircraft Wingtip Vortex Effects
Induced Drag Ratio & Rolling Moment Coefficient
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AFF: Trailing Aircraft Dynamics in Formation

• Trailing Aircraft:

( ) ( )( )
2

sin , ,
2 TT T D

l V
VV g S C C M y
m δ

ργ δ α η φ

⎧ =
⎪
⎨

= − + −⎪
⎩ ( )

sin

,
a

z

p a

y g n

p
p a p b yδ

φ

φ
δ ξ φ

= −⎧
⎪

=⎨
⎪ = − + +⎩

Trailing Aircraft Modeling Assumptions
SCAS yields 1st order roll dynamics & turn coordination

are unknown positive constants
are unknown bounded functions of 

known arguments and shapes

Longitudinal Dynamics Lateral Dynamics

, ,
a Tp Ta b C

δδ

( ) ( ) ( ), , , , ,DC M y yα η φ ξ φ

Throttle Input
Aileron Input

Lead aircraft trimmed for level flight
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AFF: Vortex Seeking Formation Flight Control

• Problem: Using throttle and aileron inputs
– Track desired longitudinal displacement command lc

– Generate on-line and track lateral separation command yc in order to:
• Minimize unknown vortex induced drag coefficient                with 

respect to its 1st argument, (lateral separation)

• Remarks:
– Aileron controls lateral separation
– Throttle controls longitudinal separation

• depends on lateral separation through unknown function

• Solution
– Using Direct Adaptive Model Reference Control
– Radial Basis Functions for approximation of uncertainties

– Extremum Seeking Command Generation

( ),yη φ

( ) ( )( )
2

sin , ,
2 TT T D
VV g S C C M y
m δ

ργ δ α η φ= − + −

( ),yη φ

( )ˆ ,
, 0

r

r

y y

y
y

y
η φ

γ γ
=

∂
= − >
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AFF: Simulation Data
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Open Problems and Future Work
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Task 1: Validation & Verification (V&V) of 
Adaptive Systems

• Significant industry effort going into development of adaptive 
/ reconfigurable GN&C systems

• Methods to test and certify flight critical systems are not 
readily available

• There exists a necessity to develop V&V methods and 
certification tools that are similar to and extend the current 
process for conventional, non-adaptive GN&C systems

• Theoretically justified V&V technologies are needed to:
– provide a standard process against which adaptive GN&C systems can 

be certified
– offer certification guidelines during the early design cycle of such 

systems
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Task 1: V&V of Adaptive Systems
Road Map to Solution (Issue Paper)

Preliminary V&V
Design Concept

Intelligent System
Certification

Working Group

Figure C.3-16. Process for Certifying the Validation and Verification (V&V) Software and 
Developing the Certification Process for Intelligent Adaptive Systems

2T049047.3

Certification
Guidelines

Requirements
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Certification of V&V
Tool and Process

Verification
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Process

Definition of
Intelligent System
Certification
Requirement

Implementation
Requirements
(Cert. Plan)

• Design
• Hardware
• Software

Design and Build

Plan/Conduct
Verification 
Events
(Test Plan)

Certification
Authorities
(FAA/DoD/

NASA)

Provide Evidence
of CompliancePreliminary V&V

Design Concept

Intelligent System
Certification

Working Group

Figure C.3-16. Process for Certifying the Validation and Verification (V&V) Software and 
Developing the Certification Process for Intelligent Adaptive Systems

2T049047.3
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• Design
• Hardware
• Software

Design and Build

Plan/Conduct
Verification 
Events
(Test Plan)

Certification
Authorities
(FAA/DoD/

NASA)

Provide Evidence
of Compliance

Two Major Tasks
Stability Margins / Robustness 
Analysis
S/W V&V Procedures

• Goal: Provide theoretically justified 
V&V method and a process-based 
acceptance procedure to certify 
current and future intelligent / 
adaptive GN&C flight critical systems
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Task 1: V&V of Adaptive Systems
Subtask: Theoretical Stability / Robustness Analysis

• Establish adaptive control design guidelines
– Define rates of adaptation
– Calculate stability / robustness margins
– Determine bounds on control parameters that correspond to 

stability / robustness margins
• Perform system validation using the derived margins
• Incorporate modifications that lead to improvement (if 

required) in the stability / robustness margins
• Validate closed-loop system tracking performance
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Task 2: Integrated Vehicle Health Management 
(IVHM) and Composite Adaptation

• Aerodynamic parameters are of paramount importance 
to IVHM system functionality

• Examine different sources of on-line aerodynamic 
parameter estimation
– Tracking errors
– Prediction errors

• Composite Adaptive Flight Control = (Indirect + Direct) 
MRAC
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Task 3: Persistency of Excitation in Flight 
Mechanics

• Information content from adaptation / estimation processes depends 
on parameter convergence
– Requires persistent excitation (PE) of control inputs

• Need numerically stable / on-line verifiable PE conditions for flight 
mechanics and control

• Aircraft Example: Longitudinal dynamics

( )

( )

cos sin

sin cos

y

T DV g
m

T Lq g
mV

Mq
I

q

α θ α

αα θ α

θ

−⎧ = − −⎪
⎪

+⎪ = − + −⎪
⎨
⎪

=⎪
⎪
⎪ =⎩

( )
( )

( ) ( )( )0

,

,

, ,

T

e

T T T

L L

D D

M M M e e

T q S C q S C

L q S C q S C q

D q S C q S C q

M q S c C q S c C q C

δ

δ

δ

α

α

α α δ δ

= ≅⎧
⎪

= ≅⎪⎪
⎨ = ≅⎪
⎪ = ≅ +⎪⎩

Problem:
Estimate on-line unknown aerodynamic coefficients

Find sufficient conditions (PE) that yield convergence of the estimated 
parameters to their corresponding true (unknown) values

Control Inputs
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Design Example:
F-16 Adaptive Pitch Rate Tracker
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Aircraft Data
Short-Period Dynamics

• Trim conditions
– CG = 35%, Alt = 0 ft, QBAR = 300 psf, VT = 502 fps, AOA = 2.1 deg

• Nominal system
– statically unstable
– open-loop dynamically stable, (2 real negative eigenvalues)

• Control architecture
– baseline / nominal controller

• LQR pitch tracking design
– direct adaptive model following augmentation

• Simulated failures
– elevator control effectiveness: 50% reduction
– battle damage instability

• static instability: 150% increase
• pitch damping:     80% reduction

– pitching moment modeling nonlinear uncertainty
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LQR PI Baseline Controller

• Using LQR PI state feedback design
– nominal values for stability & control 

derivatives
– pitch rate step-input command
– no uncertainties, no control failures
– system dynamics:
– “wiggle” system in matrix form

I cmd
q

e

q e

e q q

Z Zq
V V

q M M q M

α δ

α δ

α α δ

α δ

⎧ = −
⎪
⎪ = + +⎨
⎪

= + +⎪⎩0 0 1 0

0 1

0

q q

e

u

q
xx

BA

e e
Z Z x A x Bu
V V

q qM M M

α δ

α δ

α α δ

⎛ ⎞ ⎛ ⎞
⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟= + ⇔ = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎝ ⎠⎝ ⎠
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LQR PI Baseline Controller
(continued)

• LQR design for the “wiggle” system
– Optimal feedback solution:
– Using original states:

– Integration yields LQR PI feedback:

u K x= −

( )
q

bl I I
e q q q q q

e
K K K K e K K q

q
α αδ α α

⎛ ⎞
⎜ ⎟= − = − − −⎜ ⎟
⎜ ⎟
⎝ ⎠

bl I I
e q q qK e K K qαδ α= − − −

0 0 1 0 100 0 0
0 -1.0189 0.9051 , -0.0022 , 0 1 0
0 0.8223 -1.0774 -0.1756 0 0 100

A B Q
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

10 3.2433 10.7432bl I
e qe qδ α= − − −

       Eigenvalue                    Damping        Freq. (rad/s)  
 -7.97e-001 + 3.45e-001i     9.18e-001     8.68e-001    
 -7.97e-001 - 3.45e-001i      9.18e-001     8.68e-001    
 -2.39e+000                         1.00e+000      2.39e+000

closed-loop 
eigenvalues

K
bl
e xK xδ = −



5

Adaptive Control: Introduction, Overview, and ApplicationsRobust and Adaptive Control Workshop

Short-Period Dynamics with 
Uncertainties

• System:

• Reference model:
– no uncertainties
– (Plant + Baseline LQR PI)

• Control Goal
– Model following pitch rate tracking:

( )( )

2

1

0

0 0 1 0 1
0 1 , 0

00

I I
q q

cmd
e

q
Bx x

B BA

e e
Z Z K q q
V V

q qM M M

α δ

α δ

α α δ α

=

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ −⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟= + Λ + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

( )( )1 0 2, cmd
ex A x B K q B qδ α= + Λ + +

( )1 2

ref
ref

T cmd cmd
ref x ref ref ref ref

BA

x A B K x B q A x B q= + + = +

0refx x− →

tracking error vector
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Adaptive Augmentation Design

• Total elevator deflection:

• Adaptive laws:

( )
( )0

ˆ ,

ˆ ˆ ˆ ˆ ,
bl ad
e e

K q

bl ad I I I I T
e e e q q q q q qK e K K q k e k k q q
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T
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II Iqq

ref
I I ref ref

k k
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Adaptive Augmentation Design
(continued)

• Free design parameters
– symmetric positive definite matrices:

• Need to solve algebraic Lyapunov equation

• Using Dead-Zone modification and Projection 
Operator

( ), ,xQ ΘΓ Γ

T
ref refP A A P Q+ = −

F-16 Sensors

Ref. 
Model -

refx

Control 
Allocation 

Adaptive 
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Baseline Inner-Loop 

Controller 

Actuators

( )TIx q qα=

cmdq

e 

x 
bl
eδ

ad
eδ eδ
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Adaptive Design Data
• Design parameters

– using 11 RBF functions:
– Rates of adaptation:

– Solving Lyapunov equation with:
• Zero initial conditions
• Pitch rate command input
• System Uncertainties

– 50% elevator effectiveness failure,
– 50% increase in static instability, 
– 80% decrease in pitch damping,
– nonlinear pitching moment

( )

[ ]
2
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i

i ie
α α
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−
= ∈ −
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2

2

2
180

0.01161.5* blM M e
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LQR PI: Tracking Step-Input 
Command

Unstable Dynamics due to Uncertainties
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LQR PI + Adaptive: Tracking Step-
Input Command

Adaptive Augmentation yields Bounded Stable Tracking 
in the Presence of Uncertainties
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LQR PI: Tracking Sinusoidal Input 
with Uncertainties

LQR PI Tracking Performance Degradation in the 
Presence of Uncertainties
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LQR PI + Adaptive: Tracking 
Sinusoidal Input with Uncertainties

Adaptive Augmentation Recovers Target Tracking 
Dynamics in the Presence of Uncertainties
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Model Following Tracking Error 
Comparison

Adaptive Augmentation yields Significant Reduction in 
Tracking Error Magnitude
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Adaptive Design Comments
• RBF NN adaptation dynamics

• Fixed RBF NN gains
– simulation data

• Projection Operator
– keeps parameters bounded
– nonlinear extension of anti-windup integrator logic

• Dead-Zone modification
– freezes adaptation process if:
– separates adaptive augmentation from baseline 

controller
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i i i I I i ref i refi i
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1 2 30, 1.1266, 24.0516i i ik k k= = − = −

refx x ε− ≤

dead-zone tolerance
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