المواد الدراسية | المرحلة | الفرع |
معالج الاشارة الرقمي الاتصالات معمارية الحاسوب | الثالثة | هندسة الحاسوب والسيطرة هندسة السيطرة هندسة الميكاترونكس |
نبذة عن المختبر:
يهتم مختبر الاتصالات بتمكين طلبة المرحلة الثالثة ولكافة الفروع (حاسبات , سيطرة ، ميكاترونكس ) من دراسة تأثير الضجيج و المرشحات على الاشارة التناظرية ودراسة التضمين السعوي والترددي والطوري اذ يحتوي المختبر على بوردات متكاملة تعمل على تطبيق التجارب العملية والبحثية في مجال الاتصالات. |
رؤية واهداف المختبر:
أن يكون للطالب إمكانية التعرف على المفاهيم الاساسية لمادة الاتصالات. وأعداد مهندسين تقنيين أكفاء قادرين على تلبية سوق العمل المحلية في مجال تقنييات الاتصالات. ويهدف المختبر الى:
1. تزويد المهندسين بالمبادئ الاساسية لمادة الاتصالات من خلال الاجهزة المستخدمة عن طريق مجموعة من التجارب المختبرية.
2. إعداد كوادر من المهندسين التقنيين ذو مستوى عالي من الفهم والمعرفة والقدرة على التعامل مع منظومات الاتصالات المختلفة.
معلومات المختبر:
اسم المادة | معالج الاشاره الرقمي |
المرحلة | الثالث |
الفرع | هندسة الحاسوب والسيطرة، هندسة السيطرة، هندسة الميكاترونكس |
درجة المختبر | تكون درجة المختبر 100% من مادة المختبرات |
حساب الدرجة | امتحان الفصل الاول:20% امتحان الفصل الثاني:20% الجهد اليومي:25% التقارير:25% التقرير النموذجي:10% |
اسم المادة | مختبرالاتصالات |
المرحلة | الثالثة |
الفرع | هندسة الحاسوب والسيطرة، هندسة السيطرة، هندسة الميكاترونكس |
درجة المختبر | تكون درجة المختبر 100% من مادة المختبرات |
حساب الدرجة | امتحان الفصل الاول:20% امتحان الفصل الثاني:20% الجهد اليومي:25% التقارير:25% التقرير النموذجي:10%
|
اسم المادة | معمارية الحاسوب |
المرحلة | الثالثة |
الفرع | هندسة الحاسوب والسيطرة |
درجة المختبر | تكون درجة المختبر 100% من مادة المختبرات |
حساب الدرجة | امتحان الفصل الاول:20% امتحان الفصل الثاني:20% الجهد اليومي:25% التقارير:25% التقرير النموذجي:10% |
تجارب معالج الاشارة الرقمي :
First Experiment: Discrete-Time Signals |
|
Objectives | Write program to draw different functions. |
Practical of Experiment | Using Matlab program |
Second Experiment: Digital Convolution | |
Objectives | Write program to draw convolution function. |
Practical of Experiment | Using Matlab program. |
Third Experiment: Impulse and Step Response | |
Objectives | Write a program to draw impulse and step response functions. |
Practical of Experiment | Using Matlab program. |
Fourth Experiment: Discrete Fourier Transform | |
Objectives | Fourier analysis is a family of mathematical techniques, all based on decomposing signals into sinusoids. The discrete Fourier transform (DFT) is the family member used with digitized signals. |
Practical of Experiment | Using Matlab program |
Fifth Experiment: Frequency Response | |
Objectives | Write program to draw Frequency Response function. |
Practical of Experiment | Using Matlab program. |
Sixth Experiment: IIR Digital Filter Design | |
Objectives | Write a program to draw the gain response of an elliptic IIR lowpass filter. |
Practical of Experiment | Using Matlab program. |
تجارب مختبرالاتصالات :
First Experiment: SPECTRAL ANALYSIS OF THE SIGNALS |
|
Objectives | To understand the concepts of time and frequency domains as applied to a waveform. |
Practical of Experiment | In this practical you will investigate how the waveshape in the time domain affects the spectrum in the frequency domain. This is an important relationship to understand in order to be able to adjust how much frequency spectrum is occupied by a signal |
Second Experiment: EFFECT OF FILTERING & NOISE OF THE SPECTRUM |
|
Objectives | To examine the effects of filtering on waveshape and bandwidth restriction |
Practical of Experiment | Effect of Filtering on Waveshape and Spectrum. |
Third Experiment: AMPLITUDE MODULATION DOUBLE SIDEBAND WITH FULL CARRIER |
|
Objectives | To understand the concept of multiplying two sinusoidal waveforms. |
Practical of Experiment | In this practical you will investigate how two sinusoidal signals are multiplied together to produce a modulated signal. The two signals are generated on the workboard. |
Fourth Experiment: DEMODULATION WITH AN ENVELOPE DETECTOR AND WITH A PRODUCT DETECTOR |
|
Objectives | To investigate demodulation of an amplitude modulated signal using an envelope detector and subsequent filtering. |
Practical of Experiment | Demodulation is the reverse process to modulation. In this case it takes the modulated signal of a carrier and two sidebands and extracts the modulating signal from it. In this instance this can be done very simply. |
Fifth Experiment: FREQUENCY MODULATION USING AN IQ MODULATOR |
|
Objectives | To appreciate that a frequency modulated signal can be produced using an IQ modulator and the advantages of this method. |
Practical of Experiment | In this practical you will generate frequency modulation (FM) by using an IQ modulator. Since there is a good method of generating FM by using direct modulation of a voltage controlled oscillator |
Sixth Experiment: DEMODULATION OF FM USING A PHASE LOCKED LOOP |
|
Objectives | In the Practical you will see how the PLL operates as a demodulator |
Practical of Experiment | The FM generator that you will use in this Practical is the VCO that you have already used modulated by the function generator. The PLL is made from the local oscillator, which is also a VCO, and multipliers used as a phase detector. A loop filter and a post detection filter complete the demodulator |
Seventh Experiment: Ultrasonic GENERATING SSB WITH AN IQ MODULATOR |
|
Objectives | To appreciate that a single sideband suppressed carrier signal may be produced using phasing, rather than filtering, methods. |
Practical of Experiment | The generation of an SSB signal can be achieved by a number of methods. They fall into two categories: filtering out the unwanted sideband with a bandpass filter, or by using phase to cancel it out |
Eighth Experiment: SAMPLING AND TIME DIVISION MULTIPLEXING |
|
Objectives | In this practical you will investigate time division multiplexing using two A/D converters and a single D/A converter. |
Practical of Experiment | Two analogue signals: one a sinusoid and the other a variable dc voltage are fed into the two A/D converters. The microprocessor samples the two alternatively at 20 kHz. The multiplexed signal is passed to a D/A and you can see it on the oscilloscope. |
Ninth Experiment: ALIASING EFFECTS OF ALIASING |
|
Objectives | In this practical you will investigate the effect of sampling an analogue signal at sample rates near to and below its frequency |
Practical of Experiment | Aliasing can be a significant problem in any sampling system and can result in completely misleading results. The lowest rate that can be used to sample a signal is twice the frequency of the signal you are trying to sample. Even then the results may not be satisfactory |
تجارب معمارية الحاسوب:
First Experiment: 74 Series Logic Families |
|
Objectives | To get familiar with parts of 74 series logic. |
Practical of Experiment | How to use Electronics workbench program. |
Second Experiment: Design Of Shifter Unit |
|
Objectives | Study the design implementation requirements of a basic Combinational shift unit. |
Practical of Experiment | Design 4-bit combinational shift unit with four operations, using discrete gates. |
Third Experiment: Parallel Adder / Subtractor |
|
Objectives | To study the design and implementation of binary arithmetic addition and subtraction and binary coded decimal (BCD). |
Practical of Experiment | Design and implement a 4-bit parallel adder. |
Fourth Experiment: Serial Binary Addition/ Subtraction |
|
Objectives | To study the design and implementation of basic arithmetic addition and subtraction in a serial computer for both signed and unsigned numbers. |
Practical of Experiment |
1- Design and implement a serial 2’s complement circuit. 2- Design and implement a 4-bit serial adder. |
Fifth Experiment: µ – Operation Controller Of ALU |
|
Objectives |
1- Study the micro-operation of a basic ALU. 2- Design of arithmetic circuit and logic circuit of one stage ALU. |
Practical of Experiment | Design one stage arithmetic unit using a full-adder and simple gates. |
Sixth Experiment: Register Transfer & Bus System Design |
|
Objectives | Study the design methods of data transfer through a common bus. |
Practical of Experiment | Design a bus system to transfer 2-bit information between 2 registers, each of them can be considered as a source register or a destination register using multiplexer and decoder. |
Seventh Experiment: Central Processing Unit Organization |
|
Objectives | To study design requirements of a basic central processing unit and its operation. |
Practical of Experiment | Connect and test ALU (74181). |
Eighth Experiment: Hardware Design Of Binary Multiplier |
|
Objectives | Study and implementation of different methods in binary multipliers design. |
Practical of Experiment | Implement control logic circuit for binary multiplier to evaluate a binary multiplier system using sequencer register and decoder control. |
Ninth Experiment: Microprogram Sequencer For A Control Memory |
|
Objectives | To study and design requirement for the sequencer of a control memory. |
Practical of Experiment | Design input logic circuit using a minimum number of gates. |
Tenth Experiment: Design Chain Priority Interrupt System |
|
Objectives | Design Chain Priority Interrupt System |
Practical of Experiment | Draw and implement a hardware simulation of 3 devices interrupting a CPU. |